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ABSTRACT. The main theorem of this paper is that if (N, +) is a
finite abelian p-group of p-rank m where m + 1 < p, then every
regular abelian subgroup of the holomorph of IV is isomorphic to
N. The proof utilizes a connection, observed in [CDVS06], between
regular abelian subgroups of the holomorph of N and nilpotent
ring structures on (N, +). Examples are given that limit possible
generalizations of the theorem. The primary application of the
theorem is to Hopf Galois extensions of fields. Let L|K be a Galois
extension of fields with abelian Galois group G. If also L|K is H-
Hopf Galois where the K-Hopf algebra H has associated group N
with N as above, then N is isomorphic to G.

1. INTRODUCTION

Let L|K be a Galois extension of fields with (finite) Galois group G.
Then L is a KG-Hopf Galois extension of K, where KG is the group
ring of GG acting on L via the action by the Galois group G. As Greither
and Pareigis showed [GP87], there may exist K-Hopf algebras H other
than the group ring K'G that make L into a Hopf Galois extension of K.
If so, then under base change, the L-Hopf algebra L ®x H is isomorphic
to the group ring LN of a regular subgroup N of Perm(G), the group of
permutations of G. Conversely, if N is a regular subgroup of Perm(G)
normalized by A\(G), the image of the left regular representation of G
in Perm(G), then the action of LN on Homy (LG, L) descends to an
action of the K-Hopf algebra H = LN on L, making L|K into a
H-Hopf Galois extension. Thus determining Hopf Galois structures on
L|K becomes a problem of finding regular subgroups N of Perm(G)
normalized by A(G).

If L®x H= LN, then we say H has associated group N.

Subsequently, Byott [By96] translated the problem. Suppose N is a
group of the same cardinality as G, and let Hol(N) C Perm(/V) be the
normalizer of A(V). Then Hol(N) = p(N) - Aut(V), where p : N —
Perm(N) is the right regular representation (p(g)(z) = xg~'). Byott
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showed that there is a bijection between Hopf Galois structures on L|K
where the K-Hopf algebra H has associated group N and equivalence
classes of regular embeddings of G into Hol(V), where two embeddings
B,0": G — Hol(NN) are equivalent if there is an automorphism ~ of N
so that for all o in G, v8(c)y~! = 3'(0).

Let (G, N) denote the number of equivalence classes of regular em-
beddings of G into Hol(N). Then the number of Hopf Galois structures
on L|K is the sum ) e(G, N), where the sum is over all isomorphism
types of groups N of the same order as G. Counting the number of
Hopf Galois structures on L|K then becomes a set of problems, one for
each isomorphism type of groups N of the same cardinality as G.

It is therefore of interest to know when e(G,N) = 0. Of course,
since L|K is Galois with Galois group G, e(G,G) > 1, and as Greither
and Pareigis showed, if G is not abelian, then e(G, G) > 2. But for N
not isomorphic to GG , there have been some results on this question.
For example, Byott [By96] showed that if the order of G is a Burnside
number then e(G, N) = 0 if N is not isomorphic to G and = 1 for
N = G. In [CaC99], respectively [By04], it was shown that if G is a
simple non-abelian group, then e(G, N) = 2, resp. 0, if N is, resp. is
not isomorphic to G. Kohl [Ko98] showed that if G is cyclic of odd
prime power order, then e(G,N) = 0 unless N = G. On the other
hand, there are groups G for which e(G, N) # 0 for every group N of
the same cardinality as G—see, for example, [Ch03] or Proposition 6.1
of [Ko07].

In this paper we prove that if G and N are non-isomorphic abelian
p-groups where N has p-rank m and the prime p > m + 1, then
e(G,N) = 0. The proof utilizes methods of [CDVS06] that relate
abelian regular subgroups of Hol(/N) to commutative associative nilpo-
tent ring structures on N (Proposition 2 below).

Following the proof we look at a set of examples that show that the
hypotheses on the main theorem are necessary.

For discussion of the relationship between Hopf Galois structures and
local Galois module theory, see [Ch00].

2. THE MAIN THEOREM

Theorem 1. Let p be prime and N be a finite abelian p-group of p-
rank m. If m 4+ 1 < p, then every reqular abelian subgroup of Hol(N)
s 1somorphic to N.

Before proceeding to the proof, we make some preliminary observa-
tions.
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The paper [CDVS06] proves that if (V,+) is a finite elementary
abelian p-group, then every abelian regular subgroup 7' of Hol(N) =
N x Aut(N) yields a commutative, associative multiplication - on N
so that (NN, +,-) is a nilpotent ring, as follows. Define a function 7 :
N — Hol(N) C Perm(N) by: 7(a) is the unique element b - a of T'
(for b in N, o in Aut(N)) such that 7(a)(0) = a. (Since a(0) = 0
and b(0) = 0 + b, necessarily b = a.) Write a(x) = x + 6(z) for
all z in N. Then § : N — N is a homomorphism of (N,+) and
defines a multiplication on N by a - b = §(a)(b). This multiplication is
commutative and associative and makes (NN, +, -) into a nilpotent ring.
It then follows from [Ja65, p. 4] that the operation

aocb=a+b+a-b

makes (NN, o) into an abelian group, and the function 7 : N — T yields
an isomorphism from (N, o) to 7T.

It is straightforward to verify that the argument of Theorem 1 of
[CDVS06] extends without change to the case where NNV is an arbitrary
finite abelian p-group, to give

Proposition 2. Let (N,+) be a finite abelian p-group. Then each
reqular abelian subgroup of Hol(N) is isomorphic to the group (N, o)
induced from a structure (N,+,-) of a commutative, associative nilpo-
tent ring on (N,+), where aob=a+b+a-b.

We will use this description of regular abelian subgroups of Hol(V).

Notation. For m > 0 and a in N, define mea = aoao...oa (m
factors).

The following easily verified formula is a key to the proof of the main
theorem:

Lemma 3. Fora in (N,+),

p—1
Dol :pa+z <];>ai + aP.
=2

As a first simple example of how Lemma 3 will be exploited, we prove
a slightly stronger version of Theorem 1 in the elementary abelian case.

Proposition 4. Let p be prime and N be a finite elementary abelian
p-group of p-rank m. If m < p, then every reqular abelian subgroup of
Hol(N) is isomorphic to N.

Proof. Since (N, +,-) is a nilpotent ring of order p™ and p > m+ 1, we
have N? C N™*1 = {0}, so that a? = 0 for all @ in N. Now Lemma 3
implies immediately that (V, o) is also elementary abelian. O
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3. PROOF OF THE MAIN THEOREM
For ¢ > 0, let '
Q(N,+) ={z € N|p'z = 0}.
If (N, +) has exponent p¢, we have
0C (N, +)C---CQ(N,+)=N
Each ©;(N, +) is an ideal of (N, +,-), hence also a subgroup of (N, o).
Similarly, for ¢ > 0, let
QU(N,0) = {& € Nlpia = 0},
The core of the proof is to show that (N, +) and (N, o) have the same
number of elements of each order.

Proposition 5. For all i > 0,
Qi+1 <N7 +)\QZ(N7 +> g Qi+1(N7 O)\QZ(Na O)

Since N is the disjoint union of {0} and the left (resp. right) sides,
we must have equality. It follows that (N,+) = (N, o), proving the
main theorem.

Proof of Proposition 5. We first do the case ¢ = 0.
Let a # 0 in Q1 (N, +). Then pa = 0, so by Lemma 3,

poa = aP.

Since M = Q;(N,+) is an elementary abelian subgroup of (N, +), the
p-rank of M is < m, the p-rank of (N,+). Since M is an ideal of
the nilpotent ring (V,+, ), M is a nilpotent ring of order dividing p™.
Since m 4+ 1 < p, MP = 0. Thus a” = 0, and so p,a = 0. Therefore,

Q1 (N, +) C Q1(N,0).
Now let ¢+ > 0 and assume by induction that
Qi(N, +)\ Qi1 (N, +) C (N, 0)\Qi—1(N, 0).
We prove that
Qi1 (N, H)\U(N, +) C Qi1 (N, 0)\ (N, o).

Let a € Qi+1(N, +)\QZ(N, +>
We first show that a is in £;41(N, o).
If a is in Q;41(N,+), then pa is in Q;(N, +). Now

poa—pa+z<f a’ + a?,

S0 poa isin (N, +) iff a? is in ;(N, +). But M = Qi1 (N, +)/%U(N, +)
is an elementary abelian section of (IV, +), hence has p-rank < m, and
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so |[M| < p™. Also, M is the quotient of two ideals of (N, +,-), hence
is nilpotent. Thus M™! = 0. Since m+1 < p, we have M? = (. Thus
a? is in ;(N,+), hence poa is in §;(N,+) C €;(N,0). Thus a is in
Qi+1<N; O).

Now we show that a is not in Q;(N, o), by showing that p.a is not in
QZ'_1<N, +) Then Poa isin QZ(N, +)\Ql_1(N, +) C Ql(N, O)\Qi_l(N, O)7
and hence a is not in Q;(N, o).

To show that p.a is not in €,_1(N,+) we look at the subring S of
Qiv1(N,4)/Qi—1(N, +) generated by a. Then S is a nilpotent subring
of (N,+,-) and we have a decreasing chain

SoS?2o ...

Now pa is not in €;_1(N,+), so pa # 0 in S. Recall Lemma 3:

p—1
poa=pa+y <]Z>ai +aP.

1=

If pa is not in S?, then pa = p,a (mod S?), so p,a # 0 in S, and
hence poa is not in ;1 (N, +).

Suppose pa is in S*¥ and not in S**! for some k£ > 1. Then S/S* C
S/pS is an elementary abelian section of (N, +), so has p-rank < m.
Also, S/S* is an F,-vector space with basis a, a?,...,a*"!. Hence k —
1<m<p—1,and so k+1 < p. Thus a” is in S¥*!. Looking again at
Lemma 3, we see that p,a = pa (mod S*™1). Thus poa is in Q;(N,+)
but not in €;_1(NV,+), and hence in Q;(N,0)\Q;_1(N, o). Therefore a
is in ©;11(N, 0)\Qi(N,0). Thus

Qi-l—l(N’ +)\Q%(N7 +) - Qi+1 (Nv o+)\Qi<N’ O)'

By induction, the proof of Proposition 5 is complete, proving the main
theorem. 0

Remark 6. If N is an elementary abelian p-group, then Hol(N) =
AGL(N), the affine group of the F,-vector space N, that is, the semidi-
rect product N x Aut(N). If N has dimension m then Aut(/N) may be
viewed as the matrix group GL,,(F,). It is perhaps worth observing
that that description may be generalized. Suppose

_ 7 ng T,
N—Zp ><Zp X ><Zp

where ny < ns < ... <n,. Then we may view endomorphisms of N
as matrices of homomorphisms of the indecomposable direct factors of
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N. If Ais an endomorphism of IV, then A may be written as

Jiu o fm
A= : :
fim o fom
where f;; is a homomorphism from Z/p™Z to Z/p" Z. Now
Hom(Z/p“Z,Z]p™ L)

= pn]—m(Z/pn]Z) if n; > Ny,
=Z/pVZ if n; < n,.

Thus given the “standard” basis {ey,...e,} of N, namely,
er = (1,0,...,0)", ... e =(0,...,0,1)",

we can associate a matrix of integers to the endomorphism A as follows:
let
fijle:) =p Maze; if i < j
= a;e; if 1 > j,
where a;; in both cases is defined modulo p™. Then the matrix of A
relative to the standard basis is

a11 a2 1 cee Ama
na—n
P Mar e a2 cee 2
A= : R
nm_nlal,m an_m a2m ... Gmm

where the entries in the jth row are defined modulo p™i.

Following Hiller and Rhea [HRO7], let R, be the set of all matrices
in M,,(Z) of the form A as above, where all a; ; are in Z. Then R, is
a ring with identity under matrix multiplication ([HRO07], (3.2)), and
the map

Y : R, — End(N)

given by (b; ;) — (b;; mod p;) is a surjective homomorphism ([HRO07],
(3.3)). If #: End(N) — End((Z/pZ)™) is the map induced by map-
ping the matrix A = (a;;) in R, (or equivalently, ¢)(A) in End(N)) to
m(A) = (a;; mod p), then ¢(A) is an automorphism of N iff 7(A) is
in GL,,((Z/pZ)) ([HRO7], (3.6)).

A proof of the main theorem (with a somewhat more restrictive
hypothesis on p) may be constructed using this description of Hol(N):
see [Fe03].
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4. EXAMPLES

We first give examples showing that the condition m < p in Propo-
sition 4 is necessary.

Example 7. We find an example of a regular abelian subgroup G of
Hol((Z/3Z)?) of exponent 9. Since Z/3Z x U3(Z/3Z) is a 3-Sylow
subgroup of Hol((Z/3Z)?) and is isomorphic to Uy(Z/3Z) under the
embedding of Hol(Z/37Z) into GL4(Z/3Z), it suffices to find a regular
subgroup of exponent 9 in Uy(Z/3Z).

Let
1111 1010
011 1 0101
S=1oo01 1 T=lo010
000 1 000 1
Then
1001
s o100
S=1001 0|
000 1

so S has order 9. It is routine to verify that 7" has order 3 and S and T’
commute, so G = (S,T) is an abelian subgroup of Uy(Z/3Z) of order
27. To check regularity we need to show that the map = : G — Z/3Z
given by

1 * x a
01 % b

7T< 0 0 1 C - <a7b7 C)
0 0 01

is onto. But we may verify easily that

m(59) = (#,y,0)

for some z,y in Z/37Z, and then for any matrix M in Uy(Z/3Z), if
m(M) = (a,b,c), then

m(TM) = (a+c,b+1,¢) and 7(S*M) = (a + 1,b,¢).
Hence given (a, b, c) in (Z/3Z)3, we have (S¢) = (x,y, c) for some z,y
in Z/3Z, then 7(T*7¥S¢) = (w, b, ) for some w, then (53~ TP-vG5¢) =
(a,b,c). So G is a regular subgroup of Hol((Z/3Z)?) but is not isomor-
phic to (Z/37Z)3.
Ezample 8. Let F' = [, let R be the truncated polynomial ring
Flz]/a™ " F[z], and let N = zF[z]/2™ ' F|[z], a nilpotent subring of
R. Then (N, +) is an elementary abelian p group of rank m. With the



8 S. C. FEATHERSTONHAUGH, A. CARANTI, AND L. N. CHILDS

operation uov = u+ v+ u - v, (IN,0) is an abelian regular subgroup
of Hol(N, +). The map u +— 1+ u defines an isomorphism from (N, o)
onto the group U;(R) of principal units of R.

Let m = p and a be the image of x in R. Then, using Lemma 3, we

have
p—1 [
= i P—aqP £

Dol ; (i)a +a? =a’ #0,
so that (IV, o) has exponent at least p?. In fact, in [Ch07], Corollary 3,
the structure of (N, o) = U;(R) as an abelian p-group was determined
for every m: for m = p, (N, o) has type (p%,p,...,p) (i. e., (N,o0) =
sz X Zg_l).

Here is a “reverse” of the last example. This example shows that the
condition m + 1 < p in Theorem 1 is necessary.

Ezample 9. Let S be the ring zZ[x] /2?1 Z[z], let T be the image of =
in S, let (N,+,-) = S/(pz + 7*)S, and let a be the image of T in N.
Then

(1) pa+aP =0,a"™ =0 and pa’ =0 for i > 1.

Thus (N, +) has generators a,a?,...,a?"! with pa = —a? # 0, so
(N, +) has order p?, p-rank m = p — 1 and type (p*,p,...Dp).

Since (N, 4+, -) is a nilpotent ring, the operation uov = u+v+u-v for
u,v in N defines a group (NN, o), which by Proposition 2 is isomorphic
to an abelian regular subgroup of Hol(NV,+). Using Lemma 3 and the
relations (1), we have

p—1
p .
0@ = pa + a'+d? =0,
Poa =p 2:; <Z>
so that (N, o) is elementary abelian.

Now we give an example to show that the abelian assumption is
necessary.

Example 10. Let p > 5, let N = IF;’) and let

1 a ¢
G=UsF,)={[0 1 b]labcelF,}
0 01

Then G is a non-abelian group in which every element of G has order
dividing p. We show that G has a regular embedding in Hol(V).



HOPF GALOIS STRUCTURES 9

Evidently G = (A, B, C) with

A= ,B = ,C =

O O
O~
_ o O
S O =
O = O
—_— O
O O =
O = O
— O

with C central in G and A, B satisfying AB = C BA.
Identify the p-Sylow subgroup of Hol(IFf)) with Uy(F,) as in Example
7, and let 5 : G — Uy(F,) by

OoOR —~= O
KQ@
—~
Sy
S~—

I
SO O
OO ==
OoOR) = O
— == O

OO O =
O~ OO
—_ O O =

One may verify that § is a homomorphism, and that an element of
B(G) has the form

Lg () =
1 q

srpen- 33 4 0],
00 0 1

where ¢ = r 4+ s and © = w + t where w depends only on r and s.
To show that the group ((G) is regular, we need to show that the
map 7 : Uy(F,) — F by

m(B(A"B°CY)) = (w+t,s + (T _5 8) T+ 5)

is onto, that is, for all (a,b,¢) in ]Fg, there exist r, s, t so that

a=w-+1t
r+s
b=
s—i—( 9 ),
c=r1-++s.

But b = s+ (;) determines s, then ¢ = r+s determines r, hence w, then

w +t = a determines t. So B(G) is a (non-abelian) regular subgroup
of Hol(Z/pZ?).
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Remark 11. Recall that e(G, N) is the number of H-Hopf Galois struc-
tures on a Galois extension of fields with Galois group G where the Hopf
algebra H has associated group N. When e(G, N) > 0 it is of interest
to determine e(G, N), or at least find a lower bound for e(G, N).

For N an elementary abelian p-group of rank m with p > m, a lower
bound for e(N, N) was found in [Ch05]. If p > 5 and G is the group of
principal units of the ring F,[z]/(z™!) as in Example 8, a lower bound
for e(G, N) was found in [Ch07], namely, e(G, N) > p(m+)*/3-m

Continuing with Example 10, we have

Proposition 12. Let N be an elementary abelian p-group of rank 3
with p > 5 and let G = Us(F,). Then there are p* — p H-Hopf Galois
structures on a Galois extension of fields with Galois group G, where
H has associated group N.

Proof. Following the approach in [Ch07], we can determine e(G, N)
by determining Aut(G) and the stabilizer Sta(J) in Aut(N) of the
subgroup J = ((G) inside Uy(F,); then e(G, N) = | Aut(G)|/| Sta(J)|.
We first find Aut(G).
Since every element of G has order dividing p and the center of G is
generated by C', an endomorphism « of G satisfies

a(A) = A"B*C*, a(B) = A*BYC?, a(C) = C°,
where since AB = CBA, we must have

c=sr —ry =det (i Z)

If a(A'B™C") = 1, then
(ATBsct)l(AmBycz)m(Cc)n - 1.
This has the form
Arl+xmle+ym0k

for some k (all exponents in F,). If ¢ # 0, then det <i i) = 0, hence
a(A'B™C™) = 1 only for I,m,n = 0. Thus « is an automorphism for
all r,s,t,x,y,2,c such that ¢ = st — ry # 0. Since t and z may be

chosen arbitrarily,
| Aut(G)| = |Z/pZ[* - | GLa(Z/pZ)| = p*(p* — 1)(p* — p).
As for Sta(J), it is a subgroup of

<GL3(%/pZ) [1)) C GLy(Z/pZ).
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) in Sta(.J), the equation

(6 V) s =srsen (7 )

for some r, s,t implies that P has the form

¢ eq+q(3) c
0 q e
0 0 q

where g =r+s#0and e = s+ (g) and c are arbitrary elements of I,

and conversely, if P has that form, then (P

0 (1)) is in Sta(.J). Hence

| Sta(J)| = p*(p — 1), and so

[By96]
[By04]

[CDVS06]

[CaC99]

[CS69]

[ChO0]

[ChO3]
[ChOS]
[ChO7]

[Fe03]

[GPS7]

e(G, N) = | Aut(@)|/| Sta(J)| = p* — p.
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