ABELIAN HOPF GALOIS STRUCTURES ON PRIME-POWER GALOIS FIELD EXTENSIONS

S. C. FEATHERSTONHAUGH, A. CARANTI, AND L. N. CHILDS

ABSTRACT. The main theorem of this paper is that if (N, +) is a finite abelian *p*-group of *p*-rank *m* where m + 1 < p, then every regular abelian subgroup of the holomorph of *N* is isomorphic to *N*. The proof utilizes a connection, observed in [CDVS06], between regular abelian subgroups of the holomorph of *N* and nilpotent ring structures on (N, +). Examples are given that limit possible generalizations of the theorem. The primary application of the theorem is to Hopf Galois extensions of fields. Let L|K be a Galois extension of fields with abelian Galois group *G*. If also L|K is *H*-Hopf Galois where the *K*-Hopf algebra *H* has associated group *N* with *N* as above, then *N* is isomorphic to *G*.

1. INTRODUCTION

Let L|K be a Galois extension of fields with (finite) Galois group G. Then L is a KG-Hopf Galois extension of K, where KG is the group ring of G acting on L via the action by the Galois group G. As Greither and Pareigis showed [GP87], there may exist K-Hopf algebras H other than the group ring KG that make L into a Hopf Galois extension of K. If so, then under base change, the L-Hopf algebra $L \otimes_K H$ is isomorphic to the group ring LN of a regular subgroup N of Perm(G), the group of permutations of G. Conversely, if N is a regular subgroup of Perm(G) normalized by $\lambda(G)$, the image of the left regular representation of Gin Perm(G), then the action of LN on Hom_L(LG, L) descends to an action of the K-Hopf algebra $H = LN^G$ on L, making L|K into a H-Hopf Galois extension. Thus determining Hopf Galois structures on L|K becomes a problem of finding regular subgroups N of Perm(G) normalized by $\lambda(G)$.

If $L \otimes_K H \cong LN$, then we say H has associated group N.

Subsequently, Byott [By96] translated the problem. Suppose N is a group of the same cardinality as G, and let $\operatorname{Hol}(N) \subset \operatorname{Perm}(N)$ be the normalizer of $\lambda(N)$. Then $\operatorname{Hol}(N) = \rho(N) \cdot \operatorname{Aut}(N)$, where $\rho : N \to$ $\operatorname{Perm}(N)$ is the right regular representation $(\rho(g)(x) = xg^{-1})$. Byott

Date: November 12, 2010.

showed that there is a bijection between Hopf Galois structures on L|Kwhere the K-Hopf algebra H has associated group N and equivalence classes of regular embeddings of G into $\operatorname{Hol}(N)$, where two embeddings $\beta, \beta': G \to \operatorname{Hol}(N)$ are equivalent if there is an automorphism γ of Nso that for all σ in G, $\gamma\beta(\sigma)\gamma^{-1} = \beta'(\sigma)$.

Let e(G, N) denote the number of equivalence classes of regular embeddings of G into $\operatorname{Hol}(N)$. Then the number of Hopf Galois structures on L|K is the sum $\sum e(G, N)$, where the sum is over all isomorphism types of groups N of the same order as G. Counting the number of Hopf Galois structures on L|K then becomes a set of problems, one for each isomorphism type of groups N of the same cardinality as G.

It is therefore of interest to know when e(G, N) = 0. Of course, since L|K is Galois with Galois group G, $e(G, G) \ge 1$, and as Greither and Pareigis showed, if G is not abelian, then $e(G, G) \ge 2$. But for Nnot isomorphic to G, there have been some results on this question. For example, Byott [By96] showed that if the order of G is a Burnside number then e(G, N) = 0 if N is not isomorphic to G and = 1 for N = G. In [CaC99], respectively [By04], it was shown that if G is a simple non-abelian group, then e(G, N) = 2, resp. 0, if N is, resp. is not isomorphic to G. Kohl [Ko98] showed that if G is cyclic of odd prime power order, then e(G, N) = 0 unless $N \cong G$. On the other hand, there are groups G for which $e(G, N) \neq 0$ for every group N of the same cardinality as G-see, for example, [Ch03] or Proposition 6.1 of [Ko07].

In this paper we prove that if G and N are non-isomorphic abelian p-groups where N has p-rank m and the prime p > m + 1, then e(G, N) = 0. The proof utilizes methods of [CDVS06] that relate abelian regular subgroups of Hol(N) to commutative associative nilpotent ring structures on N (Proposition 2 below).

Following the proof we look at a set of examples that show that the hypotheses on the main theorem are necessary.

For discussion of the relationship between Hopf Galois structures and local Galois module theory, see [Ch00].

2. The main theorem

Theorem 1. Let p be prime and N be a finite abelian p-group of prank m. If m + 1 < p, then every regular abelian subgroup of Hol(N)is isomorphic to N.

Before proceeding to the proof, we make some preliminary observations. The paper [CDVS06] proves that if (N, +) is a finite elementary abelian *p*-group, then every abelian regular subgroup T of $\operatorname{Hol}(N) \cong$ $N \rtimes \operatorname{Aut}(N)$ yields a commutative, associative multiplication \cdot on Nso that $(N, +, \cdot)$ is a nilpotent ring, as follows. Define a function τ : $N \to \operatorname{Hol}(N) \subset \operatorname{Perm}(N)$ by: $\tau(a)$ is the unique element $b \cdot \alpha$ of T(for b in N, α in $\operatorname{Aut}(N)$) such that $\tau(a)(0) = a$. (Since $\alpha(0) = 0$ and b(0) = 0 + b, necessarily b = a.) Write $\alpha(x) = x + \delta(x)$ for all x in N. Then $\delta : N \to N$ is a homomorphism of (N, +) and defines a multiplication on N by $a \cdot b = \delta(a)(b)$. This multiplication is commutative and associative and makes $(N, +, \cdot)$ into a nilpotent ring. It then follows from [Ja65, p. 4] that the operation

$$a \circ b = a + b + a \cdot b$$

makes (N, \circ) into an abelian group, and the function $\tau : N \to T$ yields an isomorphism from (N, \circ) to T.

It is straightforward to verify that the argument of Theorem 1 of [CDVS06] extends without change to the case where N is an arbitrary finite abelian p-group, to give

Proposition 2. Let (N, +) be a finite abelian p-group. Then each regular abelian subgroup of Hol(N) is isomorphic to the group (N, \circ) induced from a structure $(N, +, \cdot)$ of a commutative, associative nilpotent ring on (N, +), where $a \circ b = a + b + a \cdot b$.

We will use this description of regular abelian subgroups of $\operatorname{Hol}(N)$. Notation. For m > 0 and a in N, define $m_{\circ}a = a \circ a \circ \ldots \circ a$ (m factors).

The following easily verified formula is a key to the proof of the main theorem:

Lemma 3. For a in (N, +),

$$p_{\circ}a = pa + \sum_{i=2}^{p-1} \binom{p}{i} a^i + a^p.$$

As a first simple example of how Lemma 3 will be exploited, we prove a slightly stronger version of Theorem 1 in the elementary abelian case.

Proposition 4. Let p be prime and N be a finite elementary abelian p-group of p-rank m. If m < p, then every regular abelian subgroup of Hol(N) is isomorphic to N.

Proof. Since $(N, +, \cdot)$ is a nilpotent ring of order p^m and $p \ge m+1$, we have $N^p \subseteq N^{m+1} = \{0\}$, so that $a^p = 0$ for all a in N. Now Lemma 3 implies immediately that (N, \circ) is also elementary abelian. \Box

3. Proof of the main theorem

For $i \geq 0$, let

$$\Omega_i(N, +) = \{ x \in N | p^i x = 0 \}.$$

If (N, +) has exponent p^e , we have

$$0 \subset \Omega_1(N,+) \subset \cdots \subset \Omega_e(N,+) = N$$

Each $\Omega_i(N, +)$ is an ideal of $(N, +, \cdot)$, hence also a subgroup of (N, \circ) . Similarly, for $i \ge 0$, let

$$\Omega_i(N,\circ) = \{ x \in N | p_o^i x = 0 \}.$$

The core of the proof is to show that (N, +) and (N, \circ) have the same number of elements of each order.

Proposition 5. For all $i \geq 0$,

$$\Omega_{i+1}(N,+) \setminus \Omega_i(N,+) \subseteq \Omega_{i+1}(N,\circ) \setminus \Omega_i(N,\circ)$$

Since N is the disjoint union of $\{0\}$ and the left (resp. right) sides, we must have equality. It follows that $(N, +) \cong (N, \circ)$, proving the main theorem.

Proof of Proposition 5. We first do the case i = 0. Let $a \neq 0$ in $\Omega_1(N, +)$. Then pa = 0, so by Lemma 3,

$$p_{\circ}a = a^p$$

Since $M = \Omega_1(N, +)$ is an elementary abelian subgroup of (N, +), the *p*-rank of M is $\leq m$, the *p*-rank of (N, +). Since M is an ideal of the nilpotent ring $(N, +, \cdot)$, M is a nilpotent ring of order dividing p^m . Since m + 1 < p, $M^p = 0$. Thus $a^p = 0$, and so $p_0 a = 0$. Therefore,

$$\Omega_1(N,+) \subset \Omega_1(N,\circ).$$

Now let $i \ge 0$ and assume by induction that

$$\Omega_i(N,+) \setminus \Omega_{i-1}(N,+) \subset \Omega_i(N,\circ) \setminus \Omega_{i-1}(N,\circ).$$

We prove that

$$\Omega_{i+1}(N,+) \setminus \Omega_i(N,+) \subset \Omega_{i+1}(N,\circ) \setminus \Omega_i(N,\circ).$$

Let $a \in \Omega_{i+1}(N, +) \setminus \Omega_i(N, +)$.

We first show that a is in $\Omega_{i+1}(N, \circ)$.

If a is in $\Omega_{i+1}(N, +)$, then pa is in $\Omega_i(N, +)$. Now

$$p_{\circ}a = pa + \sum_{i=2}^{p-1} \binom{p}{i} a^i + a^p,$$

so $p_{\circ}a$ is in $\Omega_i(N, +)$ iff a^p is in $\Omega_i(N, +)$. But $M = \Omega_{i+1}(N, +)/\Omega_i(N, +)$ is an elementary abelian section of (N, +), hence has p-rank $\leq m$, and so $|M| \leq p^m$. Also, M is the quotient of two ideals of $(N, +, \cdot)$, hence is nilpotent. Thus $M^{m+1} = 0$. Since m+1 < p, we have $M^p = 0$. Thus a^p is in $\Omega_i(N, +)$, hence $p_{\circ}a$ is in $\Omega_i(N, +) \subset \Omega_i(N, \circ)$. Thus a is in $\Omega_{i+1}(N, \circ)$.

Now we show that a is not in $\Omega_i(N, \circ)$, by showing that $p_{\circ}a$ is not in $\Omega_{i-1}(N, +)$. Then $p_{\circ}a$ is in $\Omega_i(N, +) \setminus \Omega_{i-1}(N, +) \subset \Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ)$, and hence a is not in $\Omega_i(N, \circ)$.

To show that $p_{\circ}a$ is not in $\Omega_{i-1}(N, +)$ we look at the subring S of $\Omega_{i+1}(N, +)/\Omega_{i-1}(N, +)$ generated by a. Then S is a nilpotent subring of $(N, +, \cdot)$ and we have a decreasing chain

$$S \supset S^2 \supset \dots$$

Now pa is not in $\Omega_{i-1}(N, +)$, so $pa \neq 0$ in S. Recall Lemma 3:

$$p_{\circ}a = pa + \sum_{i=2}^{p-1} {p \choose i} a^i + a^p.$$

If pa is not in S^2 , then $pa \equiv p_{\circ}a \pmod{S^2}$, so $p_{\circ}a \neq 0$ in S, and hence $p_{\circ}a$ is not in $\Omega_{i-1}(N, +)$.

Suppose pa is in S^k and not in S^{k+1} for some k > 1. Then $S/S^k \subset S/pS$ is an elementary abelian section of (N, +), so has p-rank $\leq m$. Also, S/S^k is an \mathbb{F}_p -vector space with basis a, a^2, \ldots, a^{k-1} . Hence $k - 1 \leq m < p-1$, and so $k+1 \leq p$. Thus a^p is in S^{k+1} . Looking again at Lemma 3, we see that $p_{\circ}a \equiv pa \pmod{S^{k+1}}$. Thus $p_{\circ}a$ is in $\Omega_i(N, +)$ but not in $\Omega_{i-1}(N, +)$, and hence in $\Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ)$. Therefore a is in $\Omega_{i+1}(N, \circ) \setminus \Omega_i(N, \circ)$. Thus

$$\Omega_{i+1}(N,+) \setminus \Omega_i(N,+) \subset \Omega_{i+1}(N,\circ+) \setminus \Omega_i(N,\circ).$$

By induction, the proof of Proposition 5 is complete, proving the main theorem. $\hfill \Box$

Remark 6. If N is an elementary abelian p-group, then $\operatorname{Hol}(N) \equiv \operatorname{AGL}(N)$, the affine group of the \mathbb{F}_p -vector space N, that is, the semidirect product $N \rtimes \operatorname{Aut}(N)$. If N has dimension m then $\operatorname{Aut}(N)$ may be viewed as the matrix group $\operatorname{GL}_m(\mathbb{F}_p)$. It is perhaps worth observing that that description may be generalized. Suppose

$$N = Z_p^{n_1} \times Z_p^{n_2} \times \dots \times Z_p^{n_m}$$

where $n_1 \leq n_2 \leq \ldots \leq n_m$. Then we may view endomorphisms of N as matrices of homomorphisms of the indecomposable direct factors of

N. If A is an endomorphism of N, then A may be written as

$$A = \begin{pmatrix} f_{11} & \cdots & f_{m1} \\ \vdots & & \vdots \\ f_{1m} & \cdots & f_{mm} \end{pmatrix}$$

where f_{ij} is a homomorphism from $\mathbb{Z}/p^{n_i}\mathbb{Z}$ to $\mathbb{Z}/p^{n_j}\mathbb{Z}$. Now

$$Hom(\mathbb{Z}/p^{n_i}\mathbb{Z},\mathbb{Z}/p^{n_j}\mathbb{Z})$$

$$\cong p^{n_j-n_i}(\mathbb{Z}/p^{n_j}\mathbb{Z}) \text{ if } n_j \ge n_i,$$

$$\cong \mathbb{Z}/p^{n_j}\mathbb{Z} \text{ if } n_j \le n_i.$$

Thus given the "standard" basis $\{e_1, \ldots e_m\}$ of N, namely,

$$e_1 = (1, 0, \dots, 0)^{tr}, \dots, e_m = (0, \dots, 0, 1)^{tr},$$

we can associate a matrix of integers to the endomorphism A as follows: let

$$f_{ij}(e_i) = p^{n_j - n_i} a_{i,j} e_j \text{ if } i \le j$$
$$= a_{ij} e_j \text{ if } i \ge j,$$

where a_{ij} in both cases is defined modulo p^{n_j} . Then the matrix of A relative to the standard basis is

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{2,1} & \dots & a_{m,1} \\ p^{n_2 - n_1} a_{1,2} & a_{2,2} & \dots & a_{m,2} \\ \vdots & & & \vdots \\ p^{n_m - n_1} a_{1,m} & p^{n_m - n_2} a_{2,m} & \dots & a_{m,m} \end{pmatrix},$$

where the entries in the *j*th row are defined modulo p^{n_j} .

Following Hiller and Rhea [HR07], let R_p be the set of all matrices in $M_m(\mathbb{Z})$ of the form **A** as above, where all $a_{i,j}$ are in \mathbb{Z} . Then R_p is a ring with identity under matrix multiplication ([HR07], (3.2)), and the map

$$\psi: R_p \to End(N)$$

given by $(b_{i,j}) \mapsto (b_{i,j} \mod p_j)$ is a surjective homomorphism ([HR07], (3.3)). If $\pi : End(N) \to End((\mathbb{Z}/p\mathbb{Z})^m)$ is the map induced by mapping the matrix $\mathbf{A} = (a_{i,j})$ in R_p (or equivalently, $\psi(\mathbf{A})$ in End(N)) to $\pi(\mathbf{A}) = (a_{i,j} \mod p)$, then $\psi(\mathbf{A})$ is an automorphism of N iff $\pi(\mathbf{A})$ is in $\operatorname{GL}_m((\mathbb{Z}/p\mathbb{Z}))$ ([HR07], (3.6)).

A proof of the main theorem (with a somewhat more restrictive hypothesis on p) may be constructed using this description of Hol(N): see [Fe03].

4. Examples

We first give examples showing that the condition m < p in Proposition 4 is necessary.

Example 7. We find an example of a regular abelian subgroup G of $\operatorname{Hol}((\mathbb{Z}/3\mathbb{Z})^3)$ of exponent 9. Since $\mathbb{Z}/3\mathbb{Z} \rtimes U_3(\mathbb{Z}/3\mathbb{Z})$ is a 3-Sylow subgroup of $\operatorname{Hol}((\mathbb{Z}/3\mathbb{Z})^3)$ and is isomorphic to $U_4(\mathbb{Z}/3\mathbb{Z})$ under the embedding of $\operatorname{Hol}(\mathbb{Z}/3\mathbb{Z})$ into $\operatorname{GL}_4(\mathbb{Z}/3\mathbb{Z})$, it suffices to find a regular subgroup of exponent 9 in $U_4(\mathbb{Z}/3\mathbb{Z})$.

Let

$$S = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then

$$S^{3} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

so S has order 9. It is routine to verify that T has order 3 and S and T commute, so $G = \langle S, T \rangle$ is an abelian subgroup of $U_4(\mathbb{Z}/3\mathbb{Z})$ of order 27. To check regularity we need to show that the map $\pi : G \to \mathbb{Z}/3\mathbb{Z}$ given by

$$\pi\begin{pmatrix} 1 & * & * & a \\ 0 & 1 & * & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \to (a, b, c)$$

is onto. But we may verify easily that

$$\pi(S^c) = (x, y, c)$$

for some x, y in $\mathbb{Z}/3\mathbb{Z}$, and then for any matrix M in $U_4(\mathbb{Z}/3\mathbb{Z})$, if $\pi(M) = (a, b, c)$, then

$$\pi(TM) = (a + c, b + 1, c) \text{ and } \pi(S^3M) = (a + 1, b, c).$$

Hence given (a, b, c) in $(\mathbb{Z}/3\mathbb{Z})^3$, we have $\pi(S^c) = (x, y, c)$ for some x, y in $\mathbb{Z}/3\mathbb{Z}$, then $\pi(T^{b-y}S^c) = (w, b, c)$ for some w, then $\pi(S^{3(a-w)}T^{b-y}S^c) = (a, b, c)$. So G is a regular subgroup of $\operatorname{Hol}((\mathbb{Z}/3\mathbb{Z})^3)$ but is not isomorphic to $(\mathbb{Z}/3\mathbb{Z})^3$.

Example 8. Let $F = \mathbb{F}_p$, let R be the truncated polynomial ring $F[x]/x^{m+1}F[x]$, and let $N = xF[x]/x^{m+1}F[x]$, a nilpotent subring of R. Then (N, +) is an elementary abelian p group of rank m. With the

operation $u \circ v = u + v + u \cdot v$, (N, \circ) is an abelian regular subgroup of Hol(N, +). The map $u \mapsto 1 + u$ defines an isomorphism from (N, \circ) onto the group $U_1(R)$ of principal units of R.

Let m = p and a be the image of x in R. Then, using Lemma 3, we have

$$p_{\circ}a = \sum_{i=1}^{p-1} {p \choose i} a^i + a^p = a^p \neq 0,$$

so that (N, \circ) has exponent at least p^2 . In fact, in [Ch07], Corollary 3, the structure of $(N, \circ) \cong U_1(R)$ as an abelian *p*-group was determined for every *m*: for m = p, (N, \circ) has type (p^2, p, \ldots, p) (i. e., $(N, \circ) \cong Z_{p^2} \times Z_p^{p-1}$).

Here is a "reverse" of the last example. This example shows that the condition m + 1 < p in Theorem 1 is necessary.

Example 9. Let S be the ring $x\mathbb{Z}[x]/x^{p+1}\mathbb{Z}[x]$, let \overline{x} be the image of x in S, let $(N, +, \cdot) = S/(p\overline{x} + \overline{x}^p)S$, and let a be the image of \overline{x} in N. Then

(1)
$$pa + a^p = 0, a^{p+1} = 0 \text{ and } pa^i = 0 \text{ for } i > 1.$$

Thus (N, +) has generators a, a^2, \ldots, a^{p-1} with $pa = -a^p \neq 0$, so (N, +) has order p^p , *p*-rank m = p - 1 and type (p^2, p, \ldots, p) .

Since $(N, +, \cdot)$ is a nilpotent ring, the operation $u \circ v = u + v + u \cdot v$ for u, v in N defines a group (N, \circ) , which by Proposition 2 is isomorphic to an abelian regular subgroup of $\operatorname{Hol}(N, +)$. Using Lemma 3 and the relations (1), we have

$$p_{\circ}a = pa + \sum_{i=2}^{p-1} {p \choose i} a^i + a^p = 0,$$

so that (N, \circ) is elementary abelian.

Now we give an example to show that the abelian assumption is necessary.

Example 10. Let $p \ge 5$, let $N = \mathbb{F}_p^3$ and let

$$G = U_3(\mathbb{F}_p) = \{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{F}_p \}.$$

Then G is a non-abelian group in which every element of G has order dividing p. We show that G has a regular embedding in Hol(N).

Evidently $G = \langle A, B, C \rangle$ with

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with C central in G and A, B satisfying AB = CBA.

Identify the *p*-Sylow subgroup of $\operatorname{Hol}(\mathbb{F}_p^3)$ with $U_4(\mathbb{F}_p)$ as in Example 7, and let $\beta: G \to U_4(\mathbb{F}_p)$ by

$$\beta(A) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \beta(B) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$\beta(C) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

One may verify that β is a homomorphism, and that an element of $\beta(G)$ has the form

$$\beta(A^r B^s C^t) = \begin{pmatrix} 1 & q & \binom{q}{2} & x \\ 0 & 1 & q & s + \binom{q}{2} \\ 0 & 0 & 1 & q \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where q = r + s and x = w + t where w depends only on r and s.

To show that the group $\beta(G)$ is regular, we need to show that the map $\pi: U_4(\mathbb{F}_p) \to \mathbb{F}_p^3$ by

$$\pi(\beta(A^r B^s C^t)) = (w+t, s + \binom{r+s}{2}, r+s)$$

is onto, that is, for all (a, b, c) in \mathbb{F}_p^3 , there exist r, s, t so that

$$a = w + t$$

$$b = s + \binom{r+s}{2},$$

$$c = r + s.$$

But $b = s + {c \choose 2}$ determines s, then c = r + s determines r, hence w, then w + t = a determines t. So $\beta(G)$ is a (non-abelian) regular subgroup of Hol $(\mathbb{Z}/p\mathbb{Z}^3)$.

Remark 11. Recall that e(G, N) is the number of *H*-Hopf Galois structures on a Galois extension of fields with Galois group *G* where the Hopf algebra *H* has associated group *N*. When e(G, N) > 0 it is of interest to determine e(G, N), or at least find a lower bound for e(G, N).

For N an elementary abelian p-group of rank m with p > m, a lower bound for e(N, N) was found in [Ch05]. If $p \ge 5$ and G is the group of principal units of the ring $\mathbb{F}_p[x]/(x^{m+1})$ as in Example 8, a lower bound for e(G, N) was found in [Ch07], namely, $e(G, N) > p^{(m+1)^2/3-m}$.

Continuing with Example 10, we have

Proposition 12. Let N be an elementary abelian p-group of rank 3 with $p \ge 5$ and let $G = U_3(\mathbb{F}_p)$. Then there are $p^3 - p$ H-Hopf Galois structures on a Galois extension of fields with Galois group G, where H has associated group N.

Proof. Following the approach in [Ch07], we can determine e(G, N) by determining $\operatorname{Aut}(G)$ and the stabilizer $\operatorname{Sta}(J)$ in $\operatorname{Aut}(N)$ of the subgroup $J = \beta(G)$ inside $U_4(\mathbb{F}_p)$; then $e(G, N) = |\operatorname{Aut}(G)|/|\operatorname{Sta}(J)|$.

We first find $\operatorname{Aut}(G)$.

Since every element of G has order dividing p and the center of G is generated by C, an endomorphism α of G satisfies

$$\alpha(A) = A^r B^s C^t, \alpha(B) = A^x B^y C^z, \alpha(C) = C^c,$$

where since AB = CBA, we must have

$$c = sx - ry = \det \begin{pmatrix} s & y \\ r & x \end{pmatrix}.$$

If $\alpha(A^l B^m C^n) = 1$, then

$$(A^r B^s C^t)^l (A^x B^y C^z)^m (C^c)^n = 1.$$

This has the form

 $A^{rl+xm}B^{sl+ym}C^k$

for some k (all exponents in \mathbb{F}_p). If $c \neq 0$, then det $\begin{pmatrix} s & y \\ r & x \end{pmatrix} \neq 0$, hence $\alpha(A^l B^m C^n) = 1$ only for l, m, n = 0. Thus α is an automorphism for all r, s, t, x, y, z, c such that $c = sx - ry \neq 0$. Since t and z may be chosen arbitrarily,

$$\operatorname{Aut}(G) = |\mathbb{Z}/p\mathbb{Z}|^2 \cdot |\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})| = p^2(p^2 - 1)(p^2 - p)$$

As for Sta(J), it is a subgroup of

$$\begin{pmatrix} \operatorname{GL}_3(\mathbb{Z}/p\mathbb{Z}) & 0\\ 0 & 1 \end{pmatrix} \subset \operatorname{GL}_4(\mathbb{Z}/p\mathbb{Z}).$$

For $\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}$ in Sta(*J*), the equation $\begin{pmatrix} P & 0 \\ 0 \end{pmatrix} = c(A) = c(A) = 0$

$$\begin{pmatrix} P & 0\\ 0 & 1 \end{pmatrix} \beta(A) = \beta(A^r B^s C^t) \begin{pmatrix} P & 0\\ 0 & 1 \end{pmatrix}$$

for some r, s, t implies that P has the form

$$P = \begin{pmatrix} q^3 & eq + q\binom{q}{2} & c\\ 0 & q & e\\ 0 & 0 & q \end{pmatrix}$$

where $q = r + s \neq 0$ and $e = s + {q \choose 2}$ and c are arbitrary elements of \mathbb{F}_p , and conversely, if P has that form, then $\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}$ is in $\operatorname{Sta}(J)$. Hence $|\operatorname{Sta}(J)| = p^2(p-1)$, and so

$$e(G, N) = |\operatorname{Aut}(G)| / |\operatorname{Sta}(J)| = p^3 - p.$$

	-	

References

[By96]	N. P. Byott, Uniqueness of Hopf Galois structure of separable field
[By04]	extensions, Comm. Algebra 24 (1996), 3217–3228. N. P. Byott, Hopf-Galois structures on field extensions with simple
[CDVS06]	Galois groups, Bull. London Math. Soc. 36 (2004), 45–57. A. Caranti, F. Dalla Volta, M. Sala, Abelian regular subgroups of the affine group and radical rings, Publ. Math. Debrecen 69 (2006), 297–308 (available as http://arxiv.org/abs/math/010166).
[CaC99]	S. Carnahan, L. N. Childs, Counting Hopf Galois structures on non- abelian Galois field extensions, J. Algebra 218 (1999), 81–92.
[CS69]	S. U. Chase, M. E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, Vol. 97 Springer-Verlag, Berlin-New York,
[Ch00]	 1969. L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, American Mathematical Society, Mathematical Summun and Managements. 80, 2000.
[Ch03]	Surveys and Monographs 80, 2000.L. N. Childs, On Hopf Galois structures and complete groups, New York J. Math. 9 (2003), 99–116.
[Ch05]	L. N. Childs, Elementary abelian Hopf Galois structures and polynomial formal groups, J. Algebra 283 (2005), 292–316.
[Ch07]	L. N. Childs, Some Hopf Galois structures arising from elementary abelian <i>p</i> -groups, Proc. Amer. Math. Soc. 135 (2007), 3453–3460.
[Fe03]	S. C. Featherstonhaugh, Abelian Hopf Galois extensions on Galois field extensions of prime power order, Ph. D. thesis, Univ. at Albany, NY, 2003.
[GP87]	C. Greither, B. Parieigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987), 239–258.

12 S. C. FEATHERSTONHAUGH, A. CARANTI, AND L. N. CHILDS

- [HR07] C. Hillar, D. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), 917–923.
- [Ja65] N. Jacobson, Structure of Rings, 2nd. ed., Amer. Math. Soc. Colloq. 37, 1965.
- [Ko98] T. Kohl, Classification of the Hopf Galois structures on prime power radical extensions, J. Algebra 207 (1998), 525–546.
- [Ko07] T. Kohl, Groups of order 4p, twisted wreath products and Hopf-Galois theory, J. Algebra 314 (2007), 42–74.

DEPARTMENT OF MATHEMATICS, BOROUGH OF MANHATTAN COMMUNITY COLLEGE/CUNY, 199 CHAMBERS STREET, ROOM N-520, NEW YORK, NY 10007

E-mail address: sfeatherstonhaugh@bmcc.cuny.edu

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI TRENTO, VIA SOMMARIVE 14, I-38123 POVO (TRENTO), ITALY *E-mail address*: caranti@science.unitn.it

DEPARTMENT OF MATHEMATICS, UNIVERSITY AT ALBANY, ALBANY, NY 12222

E-mail address: childs@math.albany.edu