ABELIAN HOPF GALOIS STRUCTURES ON PRIME-POWER GALOIS FIELD EXTENSIONS

S. C. FEATHERSTONHAUGH, A. CARANTI, AND L. N. CHILDS

ABSTRACT. The main theorem of this paper is that if $(N,+)$ is a finite abelian p-group of p-rank m where $m + 1 < p$, then every regular abelian subgroup of the holomorph of N is isomorphic to N. The proof utilizes a connection, observed in [CDVS06], between regular abelian subgroups of the holomorph of N and nilpotent ring structures on $(N, +)$. Examples are given that limit possible generalizations of the theorem. The primary application of the theorem is to Hopf Galois extensions of fields. Let $L|K$ be a Galois extension of fields with abelian Galois group G. If also $L|K$ is H -Hopf Galois where the K -Hopf algebra H has associated group N with N as above, then N is isomorphic to G .

1. Introduction

Let $L|K$ be a Galois extension of fields with (finite) Galois group G. Then L is a KG-Hopf Galois extension of K, where KG is the group ring of G acting on L via the action by the Galois group G . As Greither and Pareigis showed [GP87], there may exist K-Hopf algebras H other than the group ring KG that make L into a Hopf Galois extension of K. If so, then under base change, the L-Hopf algebra $L \otimes_K H$ is isomorphic to the group ring LN of a regular subgroup N of $\mathrm{Perm}(G)$, the group of permutations of G. Conversely, if N is a regular subgroup of $\mathrm{Perm}(G)$ normalized by $\lambda(G)$, the image of the left regular representation of G in Perm(G), then the action of LN on $\text{Hom}_L(LG, L)$ descends to an action of the K-Hopf algebra $H = LN^G$ on L, making $L|K$ into a H-Hopf Galois extension. Thus determining Hopf Galois structures on $L|K$ becomes a problem of finding regular subgroups N of $\mathrm{Perm}(G)$ normalized by $\lambda(G)$.

If $L \otimes_K H \cong LN$, then we say H has associated group N.

Subsequently, Byott $[By96]$ translated the problem. Suppose N is a group of the same cardinality as G, and let $Hol(N) \subset \text{Perm}(N)$ be the normalizer of $\lambda(N)$. Then Hol $(N) = \rho(N) \cdot \text{Aut}(N)$, where $\rho: N \to$ Perm(N) is the right regular representation $(\rho(g)(x) = xg^{-1})$. Byott

Date: November 12, 2010.

showed that there is a bijection between Hopf Galois structures on $L|K$ where the K-Hopf algebra H has associated group N and equivalence classes of regular embeddings of G into $Hol(N)$, where two embeddings β , β' : $G \to Hol(N)$ are equivalent if there is an automorphism γ of N so that for all σ in $G, \gamma \beta(\sigma) \gamma^{-1} = \beta'(\sigma)$.

Let $e(G, N)$ denote the number of equivalence classes of regular embeddings of G into $Hol(N)$. Then the number of Hopf Galois structures on $L|K$ is the sum $\sum e(G, N)$, where the sum is over all isomorphism types of groups N of the same order as G . Counting the number of Hopf Galois structures on $L|K$ then becomes a set of problems, one for each isomorphism type of groups N of the same cardinality as G .

It is therefore of interest to know when $e(G, N) = 0$. Of course, since $L|K$ is Galois with Galois group $G, e(G, G) \geq 1$, and as Greither and Pareigis showed, if G is not abelian, then $e(G, G) \geq 2$. But for N not isomorphic to G , there have been some results on this question. For example, Byott $[By 96]$ showed that if the order of G is a Burnside number then $e(G, N) = 0$ if N is not isomorphic to G and $= 1$ for $N = G$. In [CaC99], respectively [By04], it was shown that if G is a simple non-abelian group, then $e(G, N) = 2$, resp. 0, if N is, resp. is not isomorphic to G. Kohl [Ko98] showed that if G is cyclic of odd prime power order, then $e(G, N) = 0$ unless $N \cong G$. On the other hand, there are groups G for which $e(G, N) \neq 0$ for every group N of the same cardinality as G –see, for example, [Ch03] or Proposition 6.1 of [Ko07].

In this paper we prove that if G and N are non-isomorphic abelian p-groups where N has p-rank m and the prime $p > m + 1$, then $e(G, N) = 0$. The proof utilizes methods of [CDVS06] that relate abelian regular subgroups of $Hol(N)$ to commutative associative nilpotent ring structures on N (Proposition 2 below).

Following the proof we look at a set of examples that show that the hypotheses on the main theorem are necessary.

For discussion of the relationship between Hopf Galois structures and local Galois module theory, see [Ch00].

2. The main theorem

Theorem 1. Let p be prime and N be a finite abelian p-group of prank m. If $m + 1 < p$, then every regular abelian subgroup of $Hol(N)$ is isomorphic to N.

Before proceeding to the proof, we make some preliminary observations.

The paper [CDVS06] proves that if $(N,+)$ is a finite elementary abelian p-group, then every abelian regular subgroup T of Hol(N) \cong $N \rtimes \text{Aut}(N)$ yields a commutative, associative multiplication \cdot on N so that $(N, +, \cdot)$ is a nilpotent ring, as follows. Define a function τ : $N \to Hol(N) \subset Perm(N)$ by: $\tau(a)$ is the unique element $b \cdot \alpha$ of T (for b in N, α in Aut(N)) such that $\tau(a)(0) = a$. (Since $\alpha(0) = 0$ and $b(0) = 0 + b$, necessarily $b = a$.) Write $\alpha(x) = x + \delta(x)$ for all x in N. Then $\delta : N \to N$ is a homomorphism of $(N,+)$ and defines a multiplication on N by $a \cdot b = \delta(a)(b)$. This multiplication is commutative and associative and makes $(N, +, \cdot)$ into a nilpotent ring. It then follows from [Ja65, p. 4] that the operation

$$
a \circ b = a + b + a \cdot b
$$

makes (N, \circ) into an abelian group, and the function $\tau : N \to T$ yields an isomorphism from (N, \circ) to T.

It is straightforward to verify that the argument of Theorem 1 of $[CDVSO6]$ extends without change to the case where N is an arbitrary finite abelian p-group, to give

Proposition 2. Let $(N, +)$ be a finite abelian p-group. Then each regular abelian subgroup of $Hol(N)$ is isomorphic to the group (N, \circ) induced from a structure $(N, +, \cdot)$ of a commutative, associative nilpotent ring on $(N, +)$, where $a \circ b = a + b + a \cdot b$.

We will use this description of regular abelian subgroups of $Hol(N)$. Notation. For $m > 0$ and a in N, define $m_0 a = a \circ a \circ \dots \circ a$ (m factors).

The following easily verified formula is a key to the proof of the main theorem:

Lemma 3. For a in $(N, +)$,

$$
p_{\circ}a = pa + \sum_{i=2}^{p-1} {p \choose i} a^{i} + a^{p}.
$$

As a first simple example of how Lemma 3 will be exploited, we prove a slightly stronger version of Theorem 1 in the elementary abelian case.

Proposition 4. Let p be prime and N be a finite elementary abelian p-group of p-rank m. If $m < p$, then every regular abelian subgroup of $Hol(N)$ is isomorphic to N.

Proof. Since $(N, +, \cdot)$ is a nilpotent ring of order p^m and $p \ge m+1$, we have $N^p \subseteq N^{m+1} = \{0\}$, so that $a^p = 0$ for all a in N. Now Lemma 3 implies immediately that (N, \circ) is also elementary abelian. \Box 3. Proof of the main theorem

For $i \geq 0$, let

$$
\Omega_i(N,+) = \{ x \in N | p^i x = 0 \}.
$$

If $(N,+)$ has exponent p^e , we have

$$
0 \subset \Omega_1(N, +) \subset \cdots \subset \Omega_e(N, +) = N
$$

Each $\Omega_i(N,+)$ is an ideal of $(N,+, \cdot)$, hence also a subgroup of (N, \circ) . Similarly, for $i \geq 0$, let

$$
\Omega_i(N, \circ) = \{ x \in N | p_o^i x = 0 \}.
$$

The core of the proof is to show that $(N,+)$ and (N, \circ) have the same number of elements of each order.

Proposition 5. For all $i \geq 0$,

$$
\Omega_{i+1}(N,+) \backslash \Omega_i(N,+) \subseteq \Omega_{i+1}(N,\circ) \backslash \Omega_i(N,\circ)
$$

Since N is the disjoint union of $\{0\}$ and the left (resp. right) sides, we must have equality. It follows that $(N,+) \cong (N, \circ)$, proving the main theorem.

Proof of Proposition 5. We first do the case $i = 0$. Let $a \neq 0$ in $\Omega_1(N, +)$. Then $pa = 0$, so by Lemma 3,

$$
p_{\circ}a = a^p
$$

.

Since $M = \Omega_1(N, +)$ is an elementary abelian subgroup of $(N, +)$, the p-rank of M is $\leq m$, the p-rank of $(N, +)$. Since M is an ideal of the nilpotent ring $(N, +, \cdot), M$ is a nilpotent ring of order dividing p^m . Since $m + 1 < p$, $M^p = 0$. Thus $a^p = 0$, and so $p_0 a = 0$. Therefore,

$$
\Omega_1(N,+) \subset \Omega_1(N,\circ).
$$

Now let $i \geq 0$ and assume by induction that

$$
\Omega_i(N,+) \setminus \Omega_{i-1}(N,+) \subset \Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ).
$$

We prove that

$$
\Omega_{i+1}(N,+) \backslash \Omega_i(N,+) \subset \Omega_{i+1}(N,\circ) \backslash \Omega_i(N,\circ).
$$

Let $a \in \Omega_{i+1}(N,+) \backslash \Omega_i(N,+)$.

We first show that a is in $\Omega_{i+1}(N, \circ)$.

If a is in $\Omega_{i+1}(N, +)$, then pa is in $\Omega_i(N, +)$. Now

$$
p_{\circ}a = pa + \sum_{i=2}^{p-1} {p \choose i} a^{i} + a^{p},
$$

so $p_0 a$ is in $\Omega_i(N,+)$ iff a^p is in $\Omega_i(N,+)$. But $M = \Omega_{i+1}(N,+) / \Omega_i(N,+)$ is an elementary abelian section of $(N, +)$, hence has p-rank $\leq m$, and

so $|M| \leq p^m$. Also, M is the quotient of two ideals of $(N, +, \cdot)$, hence is nilpotent. Thus $M^{m+1} = 0$. Since $m + 1 < p$, we have $M^p = 0$. Thus a^p is in $\Omega_i(N, +)$, hence $p_0 a$ is in $\Omega_i(N, +) \subset \Omega_i(N, \circ)$. Thus a is in $\Omega_{i+1}(N, \circ).$

Now we show that a is not in $\Omega_i(N, \circ)$, by showing that $p_0 a$ is not in $\Omega_{i-1}(N, +)$. Then $p \circ a$ is in $\Omega_i(N, +) \setminus \Omega_{i-1}(N, +) \subset \Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ),$ and hence a is not in $\Omega_i(N, \circ)$.

To show that p_0a is not in $\Omega_{i-1}(N,+)$ we look at the subring S of $\Omega_{i+1}(N, +)/\Omega_{i-1}(N, +)$ generated by a. Then S is a nilpotent subring of $(N, +, \cdot)$ and we have a decreasing chain

$$
S \supset S^2 \supset \dots
$$

Now pa is not in $\Omega_{i-1}(N, +)$, so pa $\neq 0$ in S. Recall Lemma 3:

$$
p_{\circ}a = pa + \sum_{i=2}^{p-1} {p \choose i} a^{i} + a^{p}.
$$

If pa is not in S^2 , then $pa \equiv p_0a \pmod{S^2}$, so $p_0a \neq 0$ in S, and hence $p_0 a$ is not in $\Omega_{i-1}(N, +)$.

Suppose pa is in S^k and not in S^{k+1} for some $k > 1$. Then $S/S^k \subset$ S/pS is an elementary abelian section of $(N, +)$, so has p-rank $\leq m$. Also, S/S^k is an \mathbb{F}_p -vector space with basis a, a^2, \ldots, a^{k-1} . Hence $k-1$ $1 \leq m < p-1$, and so $k+1 \leq p$. Thus a^p is in S^{k+1} . Looking again at Lemma 3, we see that $p_0 a \equiv pa \pmod{S^{k+1}}$. Thus $p_0 a$ is in $\Omega_i(N,+)$ but not in $\Omega_{i-1}(N, +)$, and hence in $\Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ)$. Therefore a is in $\Omega_{i+1}(N, \circ) \setminus \Omega_i(N, \circ)$. Thus

$$
\Omega_{i+1}(N,+) \backslash \Omega_i(N,+) \subset \Omega_{i+1}(N,\circ+) \backslash \Omega_i(N,\circ).
$$

By induction, the proof of Proposition 5 is complete, proving the main theorem.

Remark 6. If N is an elementary abelian p-group, then Hol(N) \equiv $AGL(N)$, the affine group of the \mathbb{F}_p -vector space N, that is, the semidirect product $N \rtimes \text{Aut}(N)$. If N has dimension m then $\text{Aut}(N)$ may be viewed as the matrix group $GL_m(\mathbb{F}_p)$. It is perhaps worth observing that that description may be generalized. Suppose

$$
N = Z_p^{n_1} \times Z_p^{n_2} \times \cdots \times Z_p^{n_m}
$$

where $n_1 \leq n_2 \leq \ldots \leq n_m$. Then we may view endomorphisms of N as matrices of homomorphisms of the indecomposable direct factors of N. If A is an endomorphism of N, then A may be written as

$$
A = \begin{pmatrix} f_{11} & \cdots & f_{m1} \\ \vdots & & \vdots \\ f_{1m} & \cdots & f_{mm} \end{pmatrix}
$$

where f_{ij} is a homomorphism from $\mathbb{Z}/p^{n_i}\mathbb{Z}$ to $\mathbb{Z}/p^{n_j}\mathbb{Z}$. Now

$$
Hom(\mathbb{Z}/p^{n_i}\mathbb{Z}, \mathbb{Z}/p^{n_j}\mathbb{Z})
$$

\n
$$
\cong p^{n_j - n_i}(\mathbb{Z}/p^{n_j}\mathbb{Z}) \text{ if } n_j \ge n_i,
$$

\n
$$
\cong \mathbb{Z}/p^{n_j}\mathbb{Z} \text{ if } n_j \le n_i.
$$

Thus given the "standard" basis $\{e_1, \ldots e_m\}$ of N, namely,

$$
e_1 = (1, 0, \dots, 0)^{tr}, \dots, e_m = (0, \dots, 0, 1)^{tr},
$$

we can associate a matrix of integers to the endomorphism A as follows: let

$$
f_{ij}(e_i) = p^{n_j - n_i} a_{i,j} e_j \text{ if } i \leq j
$$

=
$$
a_{ij} e_j \text{ if } i \geq j,
$$

where a_{ij} in both cases is defined modulo p^{n_j} . Then the matrix of A relative to the standard basis is

$$
\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{2,1} & \dots & a_{m,1} \\ p^{n_2 - n_1} a_{1,2} & a_{2,2} & \dots & a_{m,2} \\ \vdots & & & \vdots \\ p^{n_m - n_1} a_{1,m} & p^{n_m - n_2} a_{2,m} & \dots & a_{m,m} \end{pmatrix},
$$

where the entries in the *j*th row are defined modulo p^{n_j} .

Following Hiller and Rhea [HR07], let R_p be the set of all matrices in $M_m(\mathbb{Z})$ of the form **A** as above, where all $a_{i,j}$ are in \mathbb{Z} . Then R_p is a ring with identity under matrix multiplication ([HR07], (3.2)), and the map

$$
\psi: R_p \to End(N)
$$

given by $(b_{i,j}) \mapsto (b_{i,j} \mod p_j)$ is a surjective homomorphism ([HR07], (3.3)). If π : $End(N) \to End((\mathbb{Z}/p\mathbb{Z})^m)$ is the map induced by mapping the matrix $\mathbf{A} = (a_{i,j})$ in R_p (or equivalently, $\psi(\mathbf{A})$ in $End(N)$) to $\pi(\mathbf{A}) = (a_{i,j} \mod p)$, then $\psi(\mathbf{A})$ is an automorphism of N iff $\pi(\mathbf{A})$ is in $GL_m((\mathbb{Z}/p\mathbb{Z}))$ ([HR07], (3.6)).

A proof of the main theorem (with a somewhat more restrictive hypothesis on p) may be constructed using this description of $Hol(N)$: see [Fe03].

4. Examples

We first give examples showing that the condition $m < p$ in Proposition 4 is necessary.

Example 7. We find an example of a regular abelian subgroup G of Hol($(\mathbb{Z}/3\mathbb{Z})^3$) of exponent 9. Since $\mathbb{Z}/3\mathbb{Z} \rtimes U_3(\mathbb{Z}/3\mathbb{Z})$ is a 3-Sylow subgroup of Hol $((\mathbb{Z}/3\mathbb{Z})^3)$ and is isomorphic to $U_4(\mathbb{Z}/3\mathbb{Z})$ under the embedding of Hol $(\mathbb{Z}/3\mathbb{Z})$ into $GL_4(\mathbb{Z}/3\mathbb{Z})$, it suffices to find a regular subgroup of exponent 9 in $U_4(\mathbb{Z}/3\mathbb{Z})$.

Let

$$
S = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
$$

Then

$$
S^3 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},
$$

so S has order 9. It is routine to verify that T has order 3 and S and T commute, so $G = \langle S, T \rangle$ is an abelian subgroup of $U_4(\mathbb{Z}/3\mathbb{Z})$ of order 27. To check regularity we need to show that the map $\pi: G \to \mathbb{Z}/3\mathbb{Z}$ given by

$$
\pi(\begin{pmatrix} 1 & * & * & a \\ 0 & 1 & * & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \to (a, b, c)
$$

is onto. But we may verify easily that

$$
\pi(S^c) = (x, y, c)
$$

for some x, y in $\mathbb{Z}/3\mathbb{Z}$, and then for any matrix M in $U_4(\mathbb{Z}/3\mathbb{Z})$, if $\pi(M) = (a, b, c)$, then

$$
\pi(TM) = (a+c, b+1, c)
$$
 and $\pi(S^3M) = (a+1, b, c)$.

Hence given (a, b, c) in $(\mathbb{Z}/3\mathbb{Z})^3$, we have $\pi(S^c) = (x, y, c)$ for some x, y in $\mathbb{Z}/3\mathbb{Z}$, then $\pi(T^{b-y}S^c) = (w, b, c)$ for some w, then $\pi(S^{3(a-w)}T^{b-y}S^c) =$ (a, b, c) . So G is a regular subgroup of Hol $((\mathbb{Z}/3\mathbb{Z})^3)$ but is not isomorphic to $(\mathbb{Z}/3\mathbb{Z})^3$.

Example 8. Let $F = \mathbb{F}_p$, let R be the truncated polynomial ring $F[x]/x^{m+1}F[x]$, and let $N = xF[x]/x^{m+1}F[x]$, a nilpotent subring of R. Then $(N,+)$ is an elementary abelian p group of rank m. With the operation $u \circ v = u + v + u \cdot v$, (N, \circ) is an abelian regular subgroup of Hol(N, +). The map $u \mapsto 1 + u$ defines an isomorphism from (N, \circ) onto the group $U_1(R)$ of principal units of R.

Let $m = p$ and a be the image of x in R. Then, using Lemma 3, we have

$$
p_{\circ}a = \sum_{i=1}^{p-1} {p \choose i} a^i + a^p = a^p \neq 0,
$$

so that (N, \circ) has exponent at least p^2 . In fact, in [Ch07], Corollary 3, the structure of $(N, \circ) \cong U_1(R)$ as an abelian p-group was determined for every m: for $m = p$, (N, \circ) has type (p^2, p, \ldots, p) (i. e., $(N, \circ) \cong$ $Z_{p^2} \times Z_p^{p-1}$).

Here is a "reverse" of the last example. This example shows that the condition $m + 1 < p$ in Theorem 1 is necessary.

Example 9. Let S be the ring $x\mathbb{Z}[x]/x^{p+1}\mathbb{Z}[x]$, let \overline{x} be the image of x in S, let $(N, +, \cdot) = S/(p\overline{x} + \overline{x}^p)S$, and let a be the image of \overline{x} in N. Then

(1)
$$
pa + a^p = 0, a^{p+1} = 0
$$
 and $pa^i = 0$ for $i > 1$.

Thus $(N,+)$ has generators a, a^2, \ldots, a^{p-1} with $pa = -a^p \neq 0$, so $(N,+)$ has order p^p , p-rank $m = p - 1$ and type $(p^2, p, \dots p)$.

Since $(N, +, \cdot)$ is a nilpotent ring, the operation $u \circ v = u + v + u \cdot v$ for u, v in N defines a group (N, \circ) , which by Proposition 2 is isomorphic to an abelian regular subgroup of $Hol(N, +)$. Using Lemma 3 and the relations (1), we have

$$
p_{\circ}a = pa + \sum_{i=2}^{p-1} {p \choose i} a^i + a^p = 0,
$$

so that (N, \circ) is elementary abelian.

Now we give an example to show that the abelian assumption is necessary.

Example 10. Let $p \geq 5$, let $N = \mathbb{F}_p^3$ and let

$$
G = U_3(\mathbb{F}_p) = \{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{F}_p \}.
$$

Then G is a non-abelian group in which every element of G has order dividing p. We show that G has a regular embedding in $Hol(N)$.

Evidently $G = \langle A, B, C \rangle$ with

$$
A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

with C central in G and A, B satisfying $AB = CBA$.

Identify the *p*-Sylow subgroup of $\text{Hol}(\mathbb{F}_p^3)$ with $U_4(\mathbb{F}_p)$ as in Example 7, and let $\beta: G \to U_4(\mathbb{F}_p)$ by

$$
\beta(A) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \beta(B) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},
$$

$$
\beta(C) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
$$

One may verify that β is a homomorphism, and that an element of $\beta(G)$ has the form

$$
\beta(A^r B^s C^t) = \begin{pmatrix} 1 & q & \binom{q}{2} & x \\ 0 & 1 & q & s + \binom{q}{2} \\ 0 & 0 & 1 & q \\ 0 & 0 & 0 & 1 \end{pmatrix},
$$

where $q = r + s$ and $x = w + t$ where w depends only on r and s.

To show that the group $\beta(G)$ is regular, we need to show that the map $\pi: U_4(\mathbb{F}_p) \to \mathbb{F}_p^3$ by

$$
\pi(\beta(A^r B^s C^t)) = (w+t, s + \binom{r+s}{2}, r+s)
$$

is onto, that is, for all (a, b, c) in \mathbb{F}_p^3 , there exist r, s, t so that

$$
a = w + t
$$

\n
$$
b = s + {r + s \choose 2},
$$

\n
$$
c = r + s.
$$

But $b = s + \binom{c}{2}$ c_2^c determines s, then $c = r + s$ determines r, hence w, then $w + t = a$ determines t. So $\beta(G)$ is a (non-abelian) regular subgroup of $\text{Hol}(\mathbb{Z}/p\mathbb{Z}^3)$.

Remark 11. Recall that $e(G, N)$ is the number of H-Hopf Galois structures on a Galois extension of fields with Galois group G where the Hopf algebra H has associated group N. When $e(G, N) > 0$ it is of interest to determine $e(G, N)$, or at least find a lower bound for $e(G, N)$.

For N an elementary abelian p-group of rank m with $p > m$, a lower bound for $e(N, N)$ was found in [Ch05]. If $p \geq 5$ and G is the group of principal units of the ring $\mathbb{F}_p[x]/(x^{m+1})$ as in Example 8, a lower bound for $e(G, N)$ was found in [Ch07], namely, $e(G, N) > p^{(m+1)^2/3-m}$.

Continuing with Example 10, we have

Proposition 12. Let N be an elementary abelian p-group of rank 3 with $p \geq 5$ and let $G = U_3(\mathbb{F}_p)$. Then there are $p^3 - p$ H-Hopf Galois structures on a Galois extension of fields with Galois group G, where H has associated group N.

Proof. Following the approach in [Ch07], we can determine $e(G, N)$ by determining $Aut(G)$ and the stabilizer $Sta(J)$ in $Aut(N)$ of the subgroup $J = \beta(G)$ inside $U_4(\mathbb{F}_p)$; then $e(G, N) = |\text{Aut}(G)|/|\text{Sta}(J)|$.

We first find $Aut(G)$.

Since every element of G has order dividing p and the center of G is generated by C, an endomorphism α of G satisfies

$$
\alpha(A) = A^r B^s C^t, \alpha(B) = A^x B^y C^z, \alpha(C) = C^c,
$$

where since $AB = CBA$, we must have

$$
c = sx - ry = \det \begin{pmatrix} s & y \\ r & x \end{pmatrix}.
$$

If $\alpha(A^l B^m C^n) = 1$, then

$$
(ArBsCt)l(AxByCz)m(Cc)n = 1.
$$

This has the form

 $A^{rl+xm}B^{sl+ym}C^k$

for some k (all exponents in \mathbb{F}_p). If $c \neq 0$, then det $\begin{pmatrix} s & y \\ r & x \end{pmatrix} \neq 0$, hence $\alpha(A^l B^m C^n) = 1$ only for $l, m, n = 0$. Thus α is an automorphism for all r, s, t, x, y, z, c such that $c = sx - ry \neq 0$. Since t and z may be chosen arbitrarily,

$$
|\operatorname{Aut}(G)| = |\mathbb{Z}/p\mathbb{Z}|^2 \cdot |\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})| = p^2(p^2 - 1)(p^2 - p).
$$

As for $Sta(J)$, it is a subgroup of

$$
\begin{pmatrix} GL_3(\mathbb{Z}/p\mathbb{Z}) & 0\\ 0 & 1 \end{pmatrix} \subset GL_4(\mathbb{Z}/p\mathbb{Z}).
$$

For $\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}$ in Sta(*J*), the equation

$$
\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \beta(A) = \beta(A^r B^s C^t) \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}
$$

for some r, s, t implies that P has the form

$$
P = \begin{pmatrix} q^3 & eq + q{q \choose 2} & c \\ 0 & q & e \\ 0 & 0 & q \end{pmatrix}
$$

where $q = r + s \neq 0$ and $e = s + \binom{q}{q}$ ^q) and c are arbitrary elements of \mathbb{F}_p , and conversely, if P has that form, then $\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}$ is in Sta(J). Hence $|\operatorname{Sta}(J)| = p^2(p-1)$, and so

$$
e(G, N) = |\operatorname{Aut}(G)| / |\operatorname{Sta}(J)| = p^3 - p.
$$

 \Box

REFERENCES

12 S. C. FEATHERSTONHAUGH, A. CARANTI, AND L. N. CHILDS

- [HR07] C. Hillar, D. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), 917–923.
- [Ja65] N. Jacobson, Structure of Rings, 2nd. ed., Amer. Math. Soc. Colloq. 37, 1965.
- [Ko98] T. Kohl, Classification of the Hopf Galois structures on prime power radical extensions, J. Algebra 207 (1998), 525–546.
- [Ko07] T. Kohl, Groups of order 4p, twisted wreath products and Hopf-Galois theory, J. Algebra 314 (2007), 42–74.

Department of Mathematics, Borough of Manhattan Community College/CUNY, 199 Chambers Street, Room N-520, New York, NY 10007

E-mail address: sfeatherstonhaugh@bmcc.cuny.edu

Dipartimento di Matematica, Universita degli Studi di Trento, via ` SOMMARIVE 14, I-38123 POVO (TRENTO), ITALY E-mail address: caranti@science.unitn.it

Department of Mathematics, University at Albany, Albany, NY 12222

E-mail address: childs@math.albany.edu