TRENTO, A.A. 2021/22 CORSO DI TEORIA DEI GRUPPI FOGLIO DI ESERCIZI # 7

Avvertenza: alcuni esercizi potrebbero riferirsi a materiale non ancora trattato a lezione.

Esercizio 7.1.

- (1) Siano H, K gruppi, sia $H \times K$ il loro prodotto semidiretto, e $H \ltimes_{\psi} K$ un prodotto semidiretto, per un certo morfismo $\psi : H \to \operatorname{Aut}(K)$.
 - (a) Si mostri che la funzione

$$H \times K \to H \ltimes_{\psi} K$$

 $(h, k) \mapsto (h, k)$

è un isomorfismo se e solo se $\psi(H) = \{1\}.$

(b) Sia $K = S_3$, $H = \langle b \rangle$ ciclico di ordine 2. Sia $\psi : H \to \text{Aut}(K)$ il morfismo definito da

$$\psi(b) = (x \mapsto x^{(12)}).$$

Dunque $\psi(b)$ è l'automorfismo interno dato dal coniugio $x \mapsto x^{(12)}$. Si mostri che esiste un isomorfismo $f: H \times K \to H \ltimes_{\psi} K$.

- (2) Siano $C_n = \langle a \rangle$ e $C_m = \langle b \rangle$ gruppi ciclici di ordine rispettivamente n e m.
 - (a) Si mostri che se $gcd(m, \varphi(n)) = 1$, allora l'unico prodotto semidiretto $C_n \rtimes C_m$ è quello diretto.
 - (b) Si mostri che se $\gcd(m, \varphi(n)) > 1$, allora esiste un morfismo non banale $\psi: C_m \to \operatorname{Aut}(C_n)$, in modo che il prodotto semidiretto $C_n \rtimes_{\psi} C_m$ non sia quello diretto.

Esercizio 7.2.

(1) Si costruisca il gruppo diedrale

$$D_n = \{ f_{\varepsilon,b} : \varepsilon = \pm 1, b \in \mathbf{Z}/n\mathbf{Z} \},\,$$

per n > 2, ove $x f_{a,b} = xa + b$.

- (2) Si mostri che ogni $f_{-1,b}$ 'e una involuzione.
- (3) Si mostri che in D_n ci sono due involuzioni (cioè elementi di ordine 2) il cui prodotto ha ordine n.
- (4) Si mostri che
 - (a) per n dispari ogni $f_{-1,b}$ ha esattamente un punto fisso,
 - (b) per n pari
 - (i) $f_{-1,b}$ non ha punti fissi se b è (la classe di) un numero dispari,
 - (ii) $f_{-1,b}$ ha due punti fissi se b è (la classe di) un numero pari.
- (5) Si mostri che per n > 2 il gruppo diedrale D_n è un prodotto semidiretto di un gruppo ciclico K di ordine n per un gruppo $H = \langle b \rangle$ di ordine 2 mediante il morfismo $\psi : H \to \operatorname{Aut}(K)$ tale che $\psi(b) = (x \mapsto x^{-1})$.

Esercizio 7.3. Sia $n \geq 2$.

- (1) Si mostri che l'insieme A_n delle permutazioni pari è un sottogruppo di S_n .
- (2) Si mostri che A_n ha indice 2 in S_n .

(SUGGERIMENTO: Questo non l'ho fatto a lezione, ma si mostri che

$$S_n = A_n \ \dot{\cup} \ (12)A_n,$$

ove $(12)A_n$ consiste delle permutazioni dispari (cioè non pari). In altre parole, la funzione

$$\sigma \mapsto (12)\sigma$$

è una biiezione fra l'insieme delle permutazioni pari e l'insieme di quelle dispari.)

(3) Si mostri che

$$A_4 = \{1, (12)(34), (13)(24), (14)(23), \text{ gli otto 3-cicli}\}.$$

- (4) Si mostri che $V = \{1, (12)(34), (13)(24), (14)(23)\}$ è un sottogruppo normale di A_4 , che è un 2-gruppo abeliano elementare.
- (5) Si mostri che A_4 è prodotto semidiretto interno di V mediante $C = \langle (123) \rangle$.
- (6) Si mostri che la matrice

$$\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

definisce un automorfismo di ordine 3 di un gruppo elementare abeliano di ordine p^2 , per p primo.

(7) Ponendo p=2 nel punto precedente, si costruisca un prodotto semidiretto, ma non diretto, esterno di un gruppo abeliano elementare di ordine 4 per un gruppo di ordine 3.