TRENTO, A.A. 2021/22 CORSO DI TEORIA DEI GRUPPI FOGLIO DI ESERCIZI # 5

Avvertenza: alcuni esercizi potrebbero riferirsi a materiale non ancora trattato a lezione.

Esercizio 5.1. Sia $G = \mathbf{R} \setminus 0$. definiamo su G un'operazione " \star " mediante

$$x \star y = \begin{cases} x \cdot y, & \text{se } y > 0, \\ y/x, & \text{se } y < 0. \end{cases}$$

- (1) Si mostri che (G,*) è un gruppo, che non è abeliano.
- (2) Magari dopo la lezione successiva, si cerchi di spiegare perché questo esercizio è collocato proprio in questo punto del corso.

Esercizio 5.2. Sia G un gruppo,

- (1) $H < G, K \triangleleft G$
- (2) $G = \langle H, K \rangle = HK$, e
- (3) $H \cap K = \{1\}.$
- (a) Si mostri che se $h_i \in H$, $k_i \in K$, abbiamo

$$(h_1k_1)(h_2k_2) = (h_1h_2)(k_1^{h_2}k_2),$$

con $h_1h_2\in H$, e $k_1^{h_2}k_2\in K$ dato che K è un sottogruppo normale. (Qui $k_1^{h_2}=h_2^{-1}k_1h_2$.)

(b) Si mostri che per $h \in H$ fissato, la funzione

$$\varphi(h): K \to K$$

$$k \to k^h = h^{-1}kh$$

è un automorfismo di K.

(c) Mostrate che la funzione

$$\varphi: H \to \operatorname{Aut}(K)$$

 $h \mapsto (k \to k^h)$

è un morfismo di gruppi.

Viceversa, siano H,K gruppi, e $\varphi:G\to \operatorname{Aut}(K)$ un morfismo. Consideriamo l'insieme $H\times K$, con l'operazione data da

$$(h_1, k_1) \cdot (h_2, k_2) = (h_1 h_2, k_1^{\varphi(h_2)} k_2),$$

ove $k^{\varphi(h)}$ indica l'azione su $k \in K$ dell'automorfismo $\varphi(h)$.

- (i) Mostrate che con questa operazione l'insieme $H \times K$ diventa un gruppo, che si indica con $K \rtimes_{\varphi} H$ o $H \ltimes_{\varphi} K$ (omettendo la φ se è implicita), e si chiama prodotto semidiretto esterno di K mediante H attraverso φ .
- (ii) Indicate in particolare l'elemento neutro, e l'inverso di ogni elemento.
- (iii) Mostrate che $H' = \{(h, 1) : h \in H\}$ e $K' = \{(1, k) : k \in K\}$ sono sottogruppi di $H \ltimes_{\omega} K$ isomorfi rispettivamente a K e H.

- 2
- (iv) Mostrate che $H \ltimes_{\varphi} K = H'K'$, con $H' \cap K' = \{1\}$.
- (v) Mostrate che $K' \leq H \ltimes_{\varphi} K$.
- (vi) Mostrate che si ha

$$(1,k)^{(h,1)} = (1,k^{\varphi(h)}),$$

e dunque $H \ltimes_{\varphi} K$ è prodotto semidiretto interno di K' mediante H', attraverso il morfismo φ , o più precisamente il morfismo

$$\varphi': H' \to \operatorname{Aut}(K')$$

 $(h, 1) \mapsto ((1, k) \mapsto (1, k^{\varphi(h)})).$

Esercizio 5.3.

- (1) Siano A, B, C gruppi, $\varphi : A \to B \in \psi : B \to C$ morfismi.
 - (a) Si mostri che la composizione (da destra a sinistra) $\varphi \circ \psi : AtoC$ è un morfismo.
 - (b) Si mostri che se φ, ψ sono isomorfismi, allora anche $\varphi \circ \psi$ lo è.
 - (c) Si mostri che se φ è un isomorfismo (dunque in particolare una funzione biiettiva, che dunque ha una inversa φ^{-1}), allora anche $\varphi^{-1}: B \to A$ lo è.
- (2) Sia G un gruppo, $\operatorname{End}(G)$ l'insieme degli $\operatorname{endomorfismi}$ di G, cioè dei morfismi $G \to G$.
 - (a) Si mostri che $\operatorname{End}(G)$ è un monoide rispetto alla composizione.
 - (b) Si mostri che il gruppo degli elementi invertibili del monoide $\operatorname{End}(G)$ è il gruppo degli *automorfismi* di G, ovvero degli isomorfismi $G \to G$.

Esercizio 5.4.

- (1) Sia G un gruppo. Si mostri che sono equivalenti
 - (a) G è abeliano,
 - (b) la funzione $x \mapsto x^2$ è un endomorfismo di G, e
 - (c) la funzione $x \mapsto x^{-1}$ è un endomorfismo di G.
- (2) Sia G un gruppo. Si mostri che la somma di due endomorfismi di G è ancora un endomorfismo di G se e solo se G è abeliano.
- (3) Si costruisca l'anello degli endomorfismi di un gruppo abeliano.

Esercizio 5.5.

- (1) Si mostri che il monoide degli endomorfismi di un gruppo ciclico di ordine n è isomorfo al monoide $\mathbf{Z}/n\mathbf{Z}$ rispetto al prodotto.
- (2) Si mostri che il gruppo degli automorfismi di un gruppo ciclico di ordine n è isomorfo al gruppo $U(\mathbf{Z}/n\mathbf{Z})$ delle unità dell'anello $\mathbf{Z}/n\mathbf{Z}$, e dunque ha ordine $\varphi(n)$, ove φ è la funzione di Eulero.