TRENTO, 2022/23

Exercise 10.1. Let G be a finite group.
(1) Define the concepts of a series and of a normal series in G.
(2) Exhibit an example of a series which is not normal.

Exercise 10.2.

(1) Define the concept of a right operator group (G, Ω, α).
(2) If G is an Ω-group (that is, there is a right operator group (G, Ω, α), for some α), define the concept of an Ω-subgroup of G and of an Ω-series in G.
(3) Define the concept of characteristic and fully invariant subgroups of a group.
(4) Exhibit examples of a group G and a subgroup $H \leq G$ such that
(a) H is not normal in G;
(b) H is normal, but not characteristic in G;
(c) H is characteristic, but not fully invariant in G.

Exercise 10.3. Let G be a group, $M \leq N \leq G$.
(1) Exhibit an example in which $M \unlhd N$ and $N \unlhd G$ but $M \nsubseteq G$.
(2) Show that if M is characteristic in N and $N \unlhd G$, then $M \unlhd G$.
(3) Show that if M is characteristic in N and N is characteristic in G, then M is characteristic in G.

Exercise 10.4.
(1) Define the concept of a refinement of an Ω-series, and of an Ω-composition series of a finite group.
(2) Show that the quotients in a composition series of a group G (thus $\Omega=\emptyset$ here) are simple groups.
(3) Show that the quotients H_{i+1} / H_{i} of a principal series (thus $\Omega=\operatorname{Inn}(G)$ here)

$$
1=H_{0}<H_{1}<\cdots<H_{n}=G
$$

are characteristically simple groups.
(4) Show that a minimal normal subgroup of a finite group G is a characteristically simple group.
(5) Show that a finite, characteristically simple group is the direct product of isomorphic copies of a simple group.
Exercise 10.5. Let G be a group. Consider the map

$$
\begin{aligned}
\iota: G & \rightarrow G^{G} \\
& g \mapsto\left(x \mapsto g^{-1} x g\right),
\end{aligned}
$$

where G^{G} is the monoid of maps on G.
(1) Show that $\iota(g) \in \operatorname{Aut}(G)$ for each $g \in G$.
(2) Show that $\iota: G \rightarrow \operatorname{Aut}(G)$ is a morphism of groups, so that

$$
\operatorname{Inn}(G)=\iota(G)
$$

is a subgroup of $\operatorname{Aut}(G)$.
(3) Show that for $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ we have

$$
\iota(g)^{\alpha}=\alpha^{-1} \iota(g) \alpha=\iota\left(g^{\alpha}\right),
$$

so that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
(4) Show that if $N \unlhd G$ and $\alpha \in \operatorname{Aut}(G)$, then $N^{\alpha} \unlhd G$.

