TRENTO, 2022/23 ADVANCED GROUP THEORY EXERCISE SHEET # 10

Exercise 10.1. Let G be a finite group.

- (1) Define the concepts of a series and of a normal series in G.
- (2) Exhibit an example of a series which is not normal.

Exercise 10.2.

- (1) Define the concept of a right operator group (G, Ω, α) .
- (2) If G is an Ω -group (that is, there is a right operator group (G, Ω, α) , for some α), define the concept of an Ω -subgroup of G and of an Ω -series in G.
- (3) Define the concept of characteristic and fully invariant subgroups of a group.
- (4) Exhibit examples of a group G and a subgroup $H \leq G$ such that
 - (a) H is not normal in G;
 - (b) H is normal, but not characteristic in G;
 - (c) H is characteristic, but not fully invariant in G.

Exercise 10.3. Let G be a group, $M \leq N \leq G$.

- (1) Exhibit an example in which $M \leq N$ and $N \leq G$ but $M \not\leq G$.
- (2) Show that if M is characteristic in N and $N \leq G$, then $M \leq G$.
- (3) Show that if M is characteristic in N and N is characteristic in G, then M is characteristic in G.

Exercise 10.4.

- (1) Define the concept of a refinement of an Ω -series, and of an Ω -composition series of a finite group.
- (2) Show that the quotients in a composition series of a group G (thus $\Omega = \emptyset$ here) are simple groups.
- (3) Show that the quotients H_{i+1}/H_i of a principal series (thus $\Omega = \text{Inn}(G)$ here)

$$1 = H_0 < H_1 < \dots < H_n = G$$

are characteristically simple groups.

- (4) Show that a minimal normal subgroup of a finite group G is a characteristically simple group.
- (5) Show that a finite, characteristically simple group is the direct product of isomorphic copies of a simple group.

Exercise 10.5. Let G be a group. Consider the map

$$\iota: G \to G^G$$
$$g \mapsto (x \mapsto g^{-1}xg),$$

where G^G is the monoid of maps on G.

(1) Show that $\iota(g) \in \operatorname{Aut}(G)$ for each $g \in G$.

(2) Show that $\iota:G\to \operatorname{Aut}(G)$ is a morphism of groups, so that

 $\operatorname{Inn}(G) = \iota(G)$

is a subgroup of $\operatorname{Aut}(G)$.

(3) Show that for $g \in G$ and $\alpha \in Aut(G)$ we have

$$\iota(g)^{\alpha} = \alpha^{-1}\iota(g)\alpha = \iota(g^{\alpha}),$$

so that Inn(G) is a *normal* subgroup of Aut(G).

(4) Show that if $N \leq G$ and $\alpha \in Aut(G)$, then $N^{\alpha} \leq G$.

2