TRENTO, 2022/23 ADVANCED GROUP THEORY EXERCISE SHEET # 8

Exercise 8.1.

(1) Let $f: G \to \mathbf{C}$ be a class function, so that $\alpha = \sum_{g \in G} f(g)g \in Z(\mathbf{C}[G])$. Let $\rho : G \to \operatorname{GL}(V_{\chi})$ be an irreducible representation affording the irreducible character χ . Let

$$\varphi: \mathbf{C}[G] \to \mathrm{End}(V_{\chi})$$
$$\sum_{g \in G} f(g)g \mapsto \sum_{g \in G} a(g)\rho(g)$$

be the natural epimorphism of algebras.

Show that

$$\varphi\left(\sum_{g\in G} f(g)g\right)$$

is a scalar matrix which has on the diagonal the number

$$\frac{|G|}{\chi(1)} \cdot (f, \overline{\chi}).$$

(2) Show that if $\chi \in Irr(G)$, and $f : G \to \mathbb{C}$ is a class function, whose values are algebraic integers, then

$$\frac{1}{\chi(1)}\sum_{g\in G}f(g)\chi(g)$$

is an algebraic integer.

(3) Show that if $\chi \in Irr(G)$, then $\chi(1)$ divides the order of G.

Exercise 8.2.

(1) Let *E* be a subfield of **C**, such that E/\mathbf{Q} is a Galois extension. Suppose that $\operatorname{Gal}(E/\mathbf{Q})$ is abelian.

Show that for $\alpha \in E$ and $g \in \operatorname{Gal}(E/\mathbf{Q})$ we have $|\alpha^g| = |\alpha|^g$.

(2) (Optional, see the notes) Show that this need not hold when $\operatorname{Gal}(E/\mathbf{Q})$ is non-abelian.

Exercise 8.3.

- (1) Let $z_1, \ldots, z_n \in \mathbf{C}$ have all absolute value 1. Show that is $|z_1 + \cdots + z_n| = n$, then $z_1 = \cdots = z_n$.
- (2) Let $\omega_1, \ldots, \omega_n \in \mathbf{C}$ be roots of unity. Show that if

$$\alpha = \frac{\omega_1 + \dots + \omega_n}{\omega_1 + \dots + \omega_n}$$

is an algebraic integer, then either $\stackrel{n}{\alpha} = 0$, or $\omega_1 = \cdots = \omega_n = \alpha$.