TRENTO, 2022/23

ADVANCED GROUP THEORY

EXERCISE SHEET \# 7

Exercise 7.1.

(1) Prove that the product of two characters is a character.
(2) Compute all products of the irreducible characters of S_{3}

Exercise 7.2. If χ is a character of the finite group G, define a function $\bar{\chi}: G \rightarrow \mathbf{C}$ by

$$
\bar{\chi}(g)=\overline{\chi(g)}
$$

(1) Prove that $\bar{\chi}$ is a character of G.
(2) Prove that

$$
\bar{\chi}(g)=\chi\left(g^{-1}\right) .
$$

Exercise 7.3. Let G be finite group acting on the finite set Ω.
(1) Define the associated permutation representation ρ and its character χ.
(2) Show that $\chi(g)=\operatorname{Fix}(g)=\left|\left\{\alpha \in \Omega: \alpha^{g}=\alpha\right\}\right|$ is the number of fixed points of g.
(3) Show that the numer of orbits of G on Ω is given by

$$
\frac{1}{|G|} \sum_{g \in G} \operatorname{Fix}(g)=(1, \chi)
$$

where 1 denotes the trivial character.
(4) Show that G acts transitively on Ω (i.e., there is only one orbit) iff $\chi=$ $1+\psi$, where ψ is a character such that $(1, \psi)=0$.
(5) Define what is meant for G to act double transitively on Ω (one also says G acts 2-transitively, or that G is 2-transitive).
(6) Show that G is 2-transitive iff ψ is irreducible.

Exercise 7.4. Compute the character tables of S_{3}, A_{4}, S_{4}.
Exercise 7.5. Let R be a commutative, unital ring of characteristic zero, so that Z is a subring with unity of R.
(1) Show that for $\alpha \in R$, the following are equivalent:
(a) there exists $n \geq 1$ and $a_{1}, \ldots, a_{n} \in \mathbf{Z}$ such that

$$
\alpha^{n}+a_{1} \alpha^{n-1}+\cdots+a_{n}=0
$$

(b) The subring

$$
\mathbf{Z}[\alpha]=\left\{a_{0}+a_{1} \alpha+\cdots+a_{k} \alpha^{k}: k \in \mathbf{N}, a_{i} \in \mathbf{Z}\right\}
$$

of R is finitely generated as a \mathbf{Z}-module.
(c) The subring $\mathbf{Z}[\alpha]$ of R is contained in a subring of R whose additive group is a finitely generated \mathbf{Z}-submodule of R.
An element α satisfying these conditions is said to be integral. If $R=\mathbf{C}$, then α is said to be an algebraic integer.
(2) Show that the integral elements of R form a subring of R.
(3) Show that if a rational number is an algebraic integer, then it is an integer.
(4) Show that character values are algebraic integers.
(5) Let G be a finite group, and R be the subset of the centre of the group algebra consisting of the linear combinations with integer coefficient of the sums of the conjugacy classes of G.
(a) Show that R is a commutative subring with unity of the centre of the group algebra.
(b) Show that all elements of R are integral.

