TRENTO, 2022/23

ADVANCED GROUP THEORY

EXERCISE SHEET \# 6

Exercise 6.1. Define the character table of a group.
Exercise 6.2. Recall that a character χ is called linear if $\chi(1)=1$.
(1) Prove that a linear character is irreducible.
(2) Exhibit an example of a group G and an irreducible character of G which is not linear.
(3) Prove that the irreducible characters of a finite abelian group are all linear.
(4) Describe the character table of a finite cyclic group.
(5) Show that the linear characters of a finite abelian group G form under pointwise multiplication a group isomorphic to G. (This is called the dual group G^{\star} of G.)
(6) Let G be a finite abelian group. Show that the map

$$
\begin{aligned}
& G \rightarrow\left(G^{\star}\right)^{\star} \\
& g \mapsto(\chi \mapsto \chi(g))
\end{aligned}
$$

is a natural isomorphism of G with the bidual $\left(G^{\star}\right)^{\star}$, very much as in the case of vector spaces.

Exercise 6.3. Let G be a finite group, $N \unlhd G$.
(1) If $\rho: G / N \rightarrow \mathrm{GL}(V)$ is a representation of G / N, prove that

$$
\begin{aligned}
\rho^{\prime}: G & \rightarrow \mathrm{GL}(V) \\
g & \mapsto \rho(g N)
\end{aligned}
$$

is a representation of G.
(2) State and prove the corresponding result for characters.

Exercise 6.4. Let G be a finite group.
(1) If χ is a linear character of G / G^{\prime}, prove that $\chi^{\prime}(g)=\chi\left(g G^{\prime}\right)$ is a linear character of G.
(2) Let χ^{\prime} be a linear character of G, that is, a morphism $G \rightarrow \mathbf{C}^{*}$.
(a) Prove that $G^{\prime} \leq \operatorname{ker}\left(\chi^{\prime}\right)$.
(b) Prove that

$$
\begin{array}{r}
\chi: G / G^{\prime} \rightarrow \mathbf{C}^{*} \\
g G^{\prime} \mapsto \chi^{\prime}(g)
\end{array}
$$

is well defined, and it is a character of G / G^{\prime}.
(Hint: χ is well defined, as if $x G^{\prime}=y G^{\prime}$, then $x=y c$ for some $c \in G^{\prime}$, and thus $\chi^{\prime}(x)=\chi^{\prime}(y) \chi^{\prime}(c)=\chi^{\prime}(y)$, as $c \in G^{\prime} \leq \operatorname{ker}\left(\chi^{\prime}\right)$.)
(3) Prove that there is a one-to-one correspondence between the linear characters of G and those of G / G^{\prime}.
Exercise 6.5. Determine the character table of S_{3}.

Exercise 6.6. Let G be a finite group.
(1) Prove that the product $\lambda \chi$ of a character χ of G by a linear character λ of G is a character of G, of the same degree of χ.
(Hint: Suppose $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation affording χ. Then

$$
\begin{aligned}
\vartheta: & G \rightarrow \mathrm{GL}(V) \\
& g \mapsto \lambda(g) \rho(g)
\end{aligned}
$$

affords $\lambda \chi$.)
(2) Prove that χ is irreducible if and only if $\lambda \chi$ is irreducible.
(Hint: This can be done in at least two ways. First method. In the notation of the previous hint, if U is a $\rho(G)$-invariant subspace of V, then $U \vartheta(g)=U \lambda(g) \rho(g)=U \rho(G)=U$, as $\lambda(g) \in \mathbf{C}^{*}$, and U is a subspace, so H is also $\vartheta(G)$-invariant. The converse is immediate. Second method.

$$
\begin{aligned}
(\lambda \chi, \lambda \chi) & =\frac{1}{|G|} \sum_{g \in G} \lambda(g) \chi(g) \overline{\lambda(g) \chi(g)} \\
& =\frac{1}{|G|} \sum_{g \in G} \lambda(g) \chi(g) \lambda(g)^{-1} \overline{\chi(g)} \\
& =\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\chi(g)}=(\chi, \chi),
\end{aligned}
$$

as $\lambda(g)$ is a scalar, and a root of unity.)
Exercise 6.7. Let $\rho_{1}, \ldots, \rho_{t}$ be the pairwise non-isomorphic irreducible representations, and $\chi_{1}, \ldots, \chi_{t}$ their characters.
(1) Prove that the components $\rho_{i}^{j k}$ are (up to suitable constants) an orthonormal basis with respect to the natural inner product on the space of functions $G \rightarrow \mathbf{C}$.
(2) Prove that the χ_{i} are an orthonormal basis with respect to a certain inner product on the space of class functions $G \rightarrow \mathbf{C}$, i.e. of the functions which are constant on conjugacy classes.

