TRENTO, 2022/23

ADVANCED GROUP THEORY

EXERCISE SHEET \# 3

Exercise 3.1.

Let $\rho_{i}: G \rightarrow \mathrm{GL}\left(V_{i}\right)$ be two representations of the finite group G.
(1) Define a morphism of representations.
(2) If $f: V_{1} \rightarrow V_{2}$ is a morphism of the representations ρ_{1}, ρ_{2}, show that
(a) the kernel $\operatorname{ker}(f)$ of f is a $\rho_{1}(G)$-invariant subspace of V_{1}, and
(b) the image $V_{1} f$ of f is a $\rho_{2}(G)$-invariant subspace of V_{2}.
(3) Let $f: V_{1} \rightarrow V_{2}$ be a linear map. Prove that

$$
\varphi=\sum_{g \in G} \rho_{1}\left(g^{-1}\right) f \rho_{2}(g): V_{1} \rightarrow V_{2}
$$

is a morphism of representations.

Exercise 3.2.

(1) Give the definition of an irreducible representation, and of a direct sum of representations.
(2) State and prove Maschke's theorem

Exercise 3.3. Let F be the field of two elements, and $V=F^{2}=\{[x, y]: x, y \in F\}$.
Let $G=\langle g\rangle$ be the cyclic group of order 2 .
(1) Show that

$$
\rho(g)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

defines a representation $\rho: G \rightarrow \mathrm{GL}(V)$.
(2) Show that $U=\langle[1,0]\rangle=\{[0,0],[1,0]\}$ is a $\rho(G)$-invariant subspace.
(3) Show that there are no other $\rho(G)$-invariant one-dimensional subspaces.

