TRENTO, 2022/23

ADVANCED GROUP THEORY

EXERCISE SHEET \# 1

Exercise 1.1.

(1) Give the definition of a (linear) representation ρ of a finite group G on a finite dimensional C-vector space V.
(In the lectures, I have only talked of a representation as a morphism $\rho: G \rightarrow \mathrm{GL}(n, \mathbf{C})$, where $\mathrm{GL}(n, \mathbf{C})$ is the group of $n \times n$ invertible matrices with complex coefficients, but one can also define a representation as a morphism $\rho: G \rightarrow \mathrm{GL}(V)$, where $\mathrm{GL}(V)$ is the group of invertible linear maps on V. Once you choose a basis of V, you get the first definition.)
(2) Show that if $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation of a finite group G of order k, then there is a change of basis on V such that

$$
\rho(g)=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{1} & \ldots & 0 \\
& & \ddots & \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right],
$$

where the λ_{i} are k-th roots of unity.
Exercise 1.2 (This will be useful later). Let the group G act (on the right) on the set Ω.

Let Δ be another set, and let Δ^{Ω} be the set of functions $\Omega \rightarrow \Delta$.
Show that setting, for $\varphi \in \Delta^{\Omega}$ and $g \in G$,

$$
\varphi^{g}(x)=\varphi\left(x^{g^{-1}}\right), \quad \text { for } x \in \Omega
$$

defines a (right) action of G on Δ^{Ω}.
(This is slightly counterintuitive. We have to prove that for $\varphi \in \Delta^{\Omega}$ and $g, h \in G$ we have

$$
\varphi^{g h}=\left(\varphi^{g}\right)^{h} .
$$

Note that if $\psi \in \Delta^{\Omega}$, then

$$
\psi^{h}(x)=\psi\left(x^{h^{-1}}\right)
$$

Setting $\psi=\varphi^{g}$, we obtain, for $x \in \Omega$,

$$
\left(\varphi^{g}\right)^{h}(x)=\varphi^{g}\left(x^{h^{-1}}\right)=\varphi\left(\left(x^{h^{-1}} g^{g^{-1}}\right)=\varphi\left(x^{h^{-1} g^{-1}}\right)=\varphi\left(x^{(g h)^{-1}}\right)=\varphi^{g h}(x),\right.
$$

as desired.)
Exercise 1.3.
(1) State von Dyck's theorem.
(2) Let

$$
S_{3}=\left\langle a_{1}, a_{2}: a_{1}^{3}, a_{2}^{2},\left(a_{1} a_{2}\right)^{2}\right\rangle .
$$

Let ω be a primitive third root of unity. Let

$$
h_{1}=\left[\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right], \quad h_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

. Show that there is a representation $\rho: S_{3} \rightarrow \mathrm{GL}(2, \mathbf{C})$ such that

$$
\rho\left(a_{i}\right)=h_{i}, \quad \text { for } i=1,2 .
$$

(3) Show that the minimal polynomial of h_{1} is $x^{2}+x+1$, and the minimal polynomial of h_{2} is $x^{2}-1$.
(4) Find a basis with respect to which h_{2} is diagonal, and find the form of h_{1} with respect to such a basis.
(5) Show that $h_{1} h_{2} \neq h_{2} h_{1}$, so that the image $\rho\left(S_{3}\right)$ of ρ is non-abelian.
(6) List the elements of $\rho\left(S_{3}\right)$.
(7) Show that ρ is injective, so that $\rho\left(S_{3}\right) \cong S_{3}$.

Exercise 1.4 (To be completed next week).
Let $V=\mathbf{C}^{n}$ be a \mathbf{C}-vector space of dimension n.
Let \mathcal{M} be a set of $n \times n$ matrices, such that each $M \in \mathcal{M}$ is diagonalisable.
Show that the following are equivalent.
(1) There is a basis of V with respect to which all $M \in \mathcal{M}$ are diagonal, and
(2) $M N=N M$ for all $M, N \mathcal{M}$.

