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Introduction

In the Spring semester of 2018–19 I gave for the first time a course (6 ECTS)
in “Advanced Group Theory” for the MSc in Mathematics in Trento (the MSc is
in English, in case you were wondering).

This is meant as a second course in group theory, after a 6 ECTS course in
Group Theory in the BSc (see the notes [Car19], in Italian), which followed a 12
ECTS basic course in Algebra (see the notes [CM19], in Italian), and a 6 ECTS
course in Galois Theory. The course is an introduction to the theory of ordinary
representations and characters of finite groups. Soluble groups are also discussed,
in view of Burnside’s paqb theorem.

I gave this course again in 2020–21 and 2022–23.
I wrote up some notes for the course, which are what you are reading right

now. The most recent version can be downloaded from
https://caranti.maths.unitn.it/

Useful Texts

Among the many good texts in group theory, I recommend
• [Mac12] (I graduated with the author);
• [Hup67], an excellent text in German;
• [Gor80], another great classic;
• [Rob96], complete and crystal clear;
• [Rot95], a nice selection of arguments;
• [Ser78]/[Ser77], a compact classic;
• [Ser16], a bit intense, but magnificent;
• [Isa06], a great, a bit demanding classic.

For the course, I am mainly using [Ser16], with some arguments taken from [Isa06],
and sometimes from [Ser78].

An excellent text for general algebra (covering for instance tensor products)
is [Lan02].
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Part 1

Preliminaries





CHAPTER 1

Preliminaries

Recalling some basic stuff, and establishing notation.

1.1. The general linear group, and projections

If V is a vector space over some field F , then GL(V ) denotes the general linear
group of invertible linear maps on V .

If V is of finite dimension n, and we fix a basis, then the elements of GL(V )
can be represented via n× n matrices. We denote by GL(n, F ) the corresponding
group of matrices, which acts on the space F n of row vectors. When F is finite of
order q (this is not going to happen in these notes), one writes also GL(n, q).

Recall that if V = U ⊕W , the projection on U along W is the linear map

π : V → V

u+ w 7→ u,

where u ∈ U and w ∈ W . Clearly (u+w)π2 = uπ = (u+ 0)π = u, so that π2 = π.
Conversely we have

1.1.1. Lemma. Let V be a vector space.
Let π be a linear map on V such that π2 = π.
Then

V = V π ⊕ ker(π),
and π is the projection on V π along ker(π).

Proof. Let v ∈ V . Then (v − vπ)π = vπ − vπ2 = 0, so that v − vπ ∈ ker(π).
If v ∈ ker(π) ∩ V π, then v = uπ for some u ∈ V , and thus v = uπ = uπ2 = vπ =
0. □

1.2. The trace

It is a well-known and elementary fact that the trace (of a square matrix)
satisfies trace(AB) = trace(BA) for all matrices A,B. In particular, if C is
invertible we have

trace(C−1AC) = trace(C−1(AC)) = trace((AC)C−1) = trace(A).

Note actually that this reminds us that the trace is defined for a linear map on a
vector space, and it does not depend on the base with respect to which one writes
it down as a matrix.

9



10 1. PRELIMINARIES

1.3. Algebras over a field

1.3.1. Definition. An algebra over the field F is a ring A 6= { 0 } with unity,
which is also a vector space over F (with respect to the same “+” operation), such
that for a, b ∈ A, λ ∈ F ,
(1.3.1) λ(ab) = (λa)b = a(λb).

It follows from the definitions that the ring product in an algebra is bilinear,
that is, for a, b ∈ A and λ ∈ F we have

(λa+ λb)c = (λ(a+ b))c = λ((a+ b)c) = λ(ac+ bc) = λ(ac) + λ(bc),
and similarly on the right.

Note that if we take a = 1 in (1.3.1), we obtain first of all for all b ∈ A

(λ · 1)b = λ(1 · b) = λb = λ(b · 1) = b(λ · 1).
This says first of all that F · 1 = {λ · 1 : λ ∈ F } is in the centre of A. And then
in particular we have
(1.3.2) λb = (λ · 1)b.
Since A 6= { 0 } by definition, the axioms of vector spaces then imply that

F → A

λ 7→ λ · 1

is an injective morphism of rings with unity. (This is because a field F has only
the ideals { 0 } and F , so a ring morphism from F to another ring either maps F
to zero, or is injective. But in a vector space, multiplication by the scalar 1 is the
identity.) Therefore F · 1 = {λ · 1 : λ ∈ F } is a subring of A isomorphic to F ,
which is often identified with F , because (1.3.2) shows that scalar multiplication
by λ, or multiplication by λ · 1 in A, are the very same thing.

1.3.2. Example. The n × n matrices over a field A are an algebra. The
identification just mentioned means that we consider λ ∈ F and the scalar matrix
λ · I with λ on the diagonal as the same thing.

1.4. The centre of the matrix algebra

Recall that if G is a group, then its centre is
Z(G) = { z ∈ G : gz = zg, for all g ∈ G } .

If A is a ring, its centre is
Z(A) = { z ∈ A : az = za, for all a ∈ A } .

1.4.1. Proposition. Show that the centre of the algebra of n×n matrices over
a field F consists of the scalar matrices.

Proof. Let A be the algebra of n × n matrices, and z ∈ Z(A). Proceeding
by way of contradiction, assume there is a vector v 6= 0 such that v and vz are
independent. Complete v, vz to a basis, and consider the linear map T that is zero
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on all basis vectors, except that it takes vz to v. Then v(zT ) = (vz)T = v, but
v(Tz) = (vT )z = 0z = 0 6= v, a contradiction.

Thus for all 0 6= v ∈ V there is a uniquely defined a(v) ∈ F such that vz =
a(v)z. (We are saying that all non-zero vectors are eigenvectors for z.) If v, w are
independent vectors then

a(v + w)v + a(v + w)w = a(v + w)(v + w) = (v + w)z =
= vz + wz = a(v)v + a(w)w,

whence
a(v) = a(v + w) = a(w),

and z is a scalar matrix. □
1.4.2. Exercise. Find other proofs for this elementary, but basic, fact. (Books

are OK, but Internet search is also allowed.)

1.4.1. Centre of the general linear group. GL(V ), the general linear
group, is the group of invertible linear maps on the finite-dimensional vector space
V . Its centre consists of the non-zero scalar matrix. A proof is a variant of the
previous one, in which one takes at T the linear map that is the identity on all
basis elements, except that (vz)T = vz + v. One checks easily that this is indeed
invertible, and then vTz = vz 6= vz + v = vzT .

An alternative proof over an infinite field F consists in noting that any matrix
A can be written as the difference of two invertible matrices. If λ ∈ F is not an
eigenvalue of A, we have in fact A = λ1 + (A − λ1). Thus if a matrix commutes
with all the invertible matrices, it commutes with all the matrices.

1.5. Simultaneous diagonalization

Let Ao, A1, . . . , Ak be n × n matrices over a field F , such that each of them
is diagonalizable, and the matrices commute pairwise, that is AiAj = AjAi. then
there is a basis with respect to which all Ai are diagonal.

Let V = F n. For each eigenvalue λ of B = A0, consider the eigenspace
V (λ) = { v ∈ V : vB = λv }. By hypothesis, V is a direct sum of the V (λ).

We claim that for each λ and i ≥ 1 we have V (λ)Ai ⊆ V (λ). In fact if v ∈ V (λ)
one has

(vAi)B = v(AiB) = v(BAi) = (vB)Ai = λ(vAi),
so that vAi ∈ V (λ). By induction on k, the restrictions of the Ai, for i ≥ 1 to
V (λ) can be simultaneously diagonalized. As the restriction of B to V (λ) is scalar
with respect to any base (see Section 1.4), all the Ai are then diagonalized at once.

1.6. Inner products

Let V be a finite-dimensional vector space over C. An inner product on V is
a map

〈 ·, · 〉 : V × V → C
which satisfies the following properties.
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(1) For λ ∈ C, x, y, z ∈ V

〈x, λy 〉 = λ 〈x, y 〉 , 〈x, y + z 〉 = 〈x, y 〉 + 〈x, z 〉 .
This states that 〈 ·, · 〉 is linear in the second component.

(2) For x, y ∈ V

〈x, y 〉 = 〈 y, x 〉.
Here the bar denotes complex conjugation. This implies that

(3) for x ∈ V

〈x, x 〉 = 〈x, x 〉
is real, and

(4) 〈 ·, · 〉 is semilinear (antilinear, conjugate-linear) in the first component,
that is, for λ ∈ C, x, y, z ∈ V

〈λx, y 〉 = λ 〈x, y 〉 , 〈x+ y, z 〉 = 〈x, z 〉 + 〈 y, z 〉 .
The first part of (4) follows from

〈λx, y 〉 = 〈 y, λx 〉 = λ 〈 y, x 〉 = λ 〈 y, x 〉 = λ 〈x, y 〉 .
(5) For x ∈ V

〈x, x 〉 ≥ 0,
and

(6) for x ∈ V

(1.6.1) 〈x, x 〉 = 0 if and only if x = 0.
Note that (1.6.1) implies

(7) for x ∈ V

(1.6.2) 〈x, y 〉 = 0 for all y ∈ V if and only if x = 0.
If V = Cn, the standard inner product is given by

(1.6.3) 〈x, y 〉 = x · yt =
n∑
i=1

xiyi.

If V has an inner product 〈 ·, · 〉, we can build an orthonormal basis with
the Gram-Schmidt process. An orthonormal basis is a basis e1, . . . , en such that
〈 ei, ej 〉 = δij for all i, j, where δij is the Kronecker delta.

Start with an arbitrary basis v1, . . . , vn, and define

e1 = 1
〈 v1, v1 〉1/2 v1,

so that 〈 e1, e1 〉 = 1.
Assume you have defined e1, . . . , ek−1 as linear combinations of v1, . . . , vk−1,

for k ≤ n. Define first
v′
k = vk − 〈 vk, e1 〉 e1 − · · · − 〈 vk, ek−1 〉 ek−1,

a vector which is independent of e1, . . . , ek−1, so that for 1 ≤ i < k we have
〈 v′

k, ei 〉 = 〈 vk, ei 〉 − 〈 vk, ei 〉 〈 ei, ei 〉 = 0.
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Then normalise
ek = 1

〈 v′
k, v

′
k 〉1/2 v

′
k.

If V has an inner product 〈 ·, · 〉, and U is a subspace with orthonormal basis
f1, . . . , fk, then the map

p : V → U

v 7→
k∑
i=1

〈 v, fi 〉 fi

is a projection onto U along the subspace
U⊥ = 〈 v ∈ V : 〈 v, u 〉 = 0 for all u ∈ U 〉 .

In fact V p ⊆ U , and if

u =
k∑
i=1

aifi ∈ U,

then 〈u, fi 〉 = ai, so that up = u. Moreover v ∈ ker(p) if and only if 〈 v, fi 〉 = 0
for all i, that is, v ∈ U⊥.

Incidentally, this shows that V = U ⊕U⊥. This also follows from the two facts
(1) (1.6.1) implies U ∩ U⊥ = { 0 }, and
(2) the condition 〈x, u 〉 = 0 for all u ∈ U translates into a homogeneous

linear system in the coordinates of x. The rank of the matrix of the
system equals to the dimension of U . Therefore U⊥, which is the set of
solutions, has dimension dim(V ) − dim(U).

With respect to an orthonormal basis, an inner product takes the standard
form (1.6.3).

Given an inner product on V , and A ∈ EndF (V ), one can define the adjoint
A∗ of A as the unique B ∈ EndF (V ) such that 〈xB, y 〉 = 〈x, yA 〉 for all x, y ∈ V .
In fact, every linear map V → C, that is, every element of the dual space V ∗ can
be represented in the form

y 7→ 〈 x, y 〉
for some x ∈ V . This is because (1.6.2) shows that the dimension of the latter
maps is exactly dim(V ) = dim(V ∗). Since for each x ∈ V the map

y 7→ 〈 x, yA 〉
is linear, we will have, for all x, y ∈ V

〈x, yA 〉 = 〈xB, y 〉
for a unique map B : V → V . But then B is linear, as for all x, y, z ∈ V we have

〈 (λx+ µy)B, z 〉 = 〈λx+ µy, zA 〉
= λ 〈x, zA 〉 + µ 〈 y, zA 〉
= λ 〈xB, z 〉 + µ 〈 yB, z 〉
= 〈λ(xB) + µ(yB), z 〉 .
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Given the standard inner product, and A ∈ GL(V ), we have

〈x, yA 〉 = x · (yA)t = x · Atyt = xA
t
yt =

〈
xA

t
, y
〉
,

so that the adjoint of A is
A∗ = A

t
.

A ∈ GL(V ) is unitary if

〈xA, yA 〉 = 〈x, y 〉 for all x, y ∈ V .

In other words, A is unitary if and only if for all x, y ∈ V one has

〈xA, yA 〉 = 〈xAA∗, y 〉 = 〈x, y 〉 ,

that is A∗ = A−1. If 0 6= λ ∈ C is an eigenvalue of a unitary A, with eigenvector
v, we have

〈 v, v 〉 = 〈 vA, vA 〉 = 〈 vλ, vλ 〉 = λλ 〈 v, v 〉 ,
so that λ has absolute value 1.

1.7. The class equation and the centre of finite p-groups

Let G be a finite group acting on itself by conjugation. Since the orbits (that
is, the conjugacy classes) form a partition, we have the class equation

|G | = |Z(G) | +
∑

|G : CG(a) | ,

where the sum is over a set of representatives of the conjugacy classes aG 6= { a },
so that each |G : CG(a) | =

∣∣∣ aG ∣∣∣ > 1.
If G 6= { 1 } is a finite p-group, then p | |G | and p divides each |G : CG(a) | =∣∣∣ aG ∣∣∣. Thus p | |Z(G) |, so that |Z(G) | > 1.

1.8. Endomorphisms, automorphisms and inner automorphisms

Let G be a group. A (homo)morphism G → G is called an endomorphism of
G. The set of all endomorphisms of a group G is denoted by End(G), and is a
monoid under the composition ◦ of map.

1.8.1. Lemma. If (G,+, 0) is an abelian group, then End(G) becomes a ring
under pointwise addition

gs+t = gs + gt, for g ∈ G and s, t ∈ End(G),

and composition of maps

gs◦t = (gs)t, for g ∈ G and s, t ∈ End(G).

1.8.2. Exercise. Prove the Lemma. The point where the hypothesis that G is
abelian plays a crucial role is when proving that if s, t ∈ End(G), then s + t ∈
End(G).
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1.8.3. Exercise. If (G, ·, 1) is any group, and s, t are maps on G, one can
define a map s+ t on G by gs+t = gs · gt.

Let I be the identity map on G, so that I ∈ End(G). Show that I+I ∈ End(G)
if and only if G is abelian.

(Hint: Note that for g ∈ G one has gI+I = gI · gI = g2. So one has to prove
that the map g 7→ g2 is a homomorphism if and only if G is abelian.)

An invertible element of End(G), that is, an endomorphism which is a bijective
map, is called an automorphism of G. The automorphisms of G form thus a group
Aut(G).

For g ∈ G, the map
ι(g) : G → G

x 7→ g−1xg

is an automorphism of G, the inner automorphism induced by g. The map
ι : G → Aut(G)
g 7→ ι(g)

is a group morphism.
The image of ι is the group Inn(G) of the inner automorphisms of G

1.8.4. Exercise. Prove these statements.
(Hint: It is possibly better to start by proving that each ι(g) is an endomor-

phism of G. Then show that ι(gh) = ι(g)ι(h) and ι(1) = 1, and then show that
ι(g−1) = ι(g)−1.)

1.8.5. Exercise. Prove that Inn(G) ⊴ Aut(G).
(Hint: Let g ∈ G and φ ∈ Aut(G). For x ∈ G we have

xι(g)φ = xφ
−1ι(g)φ = (g−1xφ

−1
g)φ = (gφ)−1xgφ = xι(g

φ),

so that ι(g)φ = ι(gφ) ∈ Inn(G).)

Now
ker(ι) = { g ∈ G : ι(g) = 1 } =

{
g ∈ G : g−1xg = x for all x ∈ G

}
= Z(G),

the centre of G. The first isomorphism theorem implies
Inn(G) ∼= G/Z(G).

1.9. Elementary abelian groups

Let p be a prime. A finite abelian group G such that xp = 1 for all x ∈ G is
said to be elementary abelian. So if G has order pn, it is isomorphic to the direct
product of n (cyclic) groups of order p.

1.9.1. Lemma. Let (V,+, 0) be an abelian group, and F a field. The following
are equivalent

(1) a structure of F -vector space on (V,+, 0), and
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(2) a homomorphism of rings with unity F → End(V ).

Proof. Suppose φ : F → End(V ) is a homomorphism of rings with unity. For
a ∈ F and v ∈ V , denote by va = vφ(a), the image of v under the endomorphism
φ(a). Let us see what this means.

Every φ(a) is an endomorphism of V , that is
(1) for u, v ∈ V and a ∈ F , one has

(u+ v)a = (u+ v)φ(a) = uφ(a) + vφ(a) = ua+ va.

Then φ(a+ b) = φ(a) + φ(b), that is
(2) for a, b ∈ F and v ∈ V one has

v(a+ b) = vφ(a+b) = vφ(a)+φ(b) = vφ(a) + vφ(b) = va+ vb.

We have used the fact that addition of f, g ∈ End(V ) is defined pointwise, that
is, for v ∈ V

vf+g = vf + vg.

Now multiplication in End(V ) is defined as composition of maps, so that φ(ab) =
φ(a) ◦ φ(b), that is

(3) for a, b ∈ F and v ∈ V one has

v(ab) = vφ(ab) = vφ(a)◦φ(b) = (vφ(a))φ(b) = (va)φ(b) = (va)b.

Finally,
(4) v1 = vφ(1) = vI = v, where 1 denotes the unity of F and I the identity

map on V .
So we see that (1)–(4) are just the axioms of an F -vector space.

The converse is immediate. □

1.9.2. Theorem. Let (V,+, 0) be an elementary abelian group of order pn > 1,
where p is a prime. For a ∈ Z and v ∈ V , the notation va stands for the a-th
multiple of v.

Let F = Z/pZ be the field with p elements.
Then for a ∈ Z and v ∈ V the operation

(1.9.1) v(a+ pZ) = va

defines a multiplication by scalars that makes V into an F -vector space.

Proof. The map

ψ : Z → End(V )
a 7→ (v 7→ va)

is a morphism of rings with unity, by the properties of multiples.
Since V 6= { 0 }, and vp = 0 for all v ∈ V , its kernel is pZ. The first isomor-

phism theorem for rings yields a morphism of rings with unity as in (1.9.1), so
that we may appeal to lemma 1.9.1. □
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Recall that if V is a finite-dimensional vector space over a field F , then GL(V )
denotes the group of invertible linear maps on the V . If F is the field with p
elements, then, once a basis is chosen, GL(V ) is isomorphic to the group GL(n, p)
of n× n matrices with non-zero determinant in F .

1.9.3. Proposition. Let (V,+, 0) be an elementary abelian group of order pn,
where p is a prime, so that V can be regarded as a vector space on the field with p
elements.

Then the group Aut(V ) of automorphisms of V coincides with the group GL(V ) ∼=
GL(n, p).

Proof. If β ∈ Aut(V ), then for a ∈ Z and v ∈ V one has
(v(a+ pZ))β = (va)β = vβa = vβ(a+ pZ),

so that β is also a linear map on the vector space V . □

1.10. Modules

On the model of Lemma 1.9.1, we give the following

1.10.1. Definition. Let (M,+, 0) be an abelian group, R a unital ring.
An R-module structure on M is a morphism of unital rings A → End(M).

1.10.2. Exercise. Show that this definition is equivalent to requiring that there
is a map

M ×R → R

(m, r) 7→ mr

which satisfies the axioms, for m,m1,m2 ∈ M and r, r1, r2 ∈ R:
(1) (m1 +m2)r = m1r +m2r
(2) m(r1 + r2) = mr1 +mr2
(3) m(r1r2) = (mr1)r2
(4) m1 = m

1.10.3. Exercise. Let R be a unital ring, M = (R,+, 0) its abelian group.
Show that M becomes a right R-module by taking

M ×R → R

(m, r) 7→ mr

and a left R-module by taking
M ×R → R

(m, r) 7→ mr

1.10.4. Remark. If R is an algebra over the field F , then an R-module is also
an F -module, and thus a vector space over F .

1.10.5. Remark. These are right modules, as we compose maps left-to-right,
so that (3) holds. If we compose maps right-to-left, then we write rm instead of
mr, and replace (3) with
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(3’) (r1r2)m = r1(r2m).
When R is a commutative ring, there is no difference between left and right mod-
ules.

If M is any abelian group, m ∈ M and r ∈ Z, the map
r 7→ (m 7→ mr),

which takes the integer r to the the map that takes m ∈ M to its r-th multiple,
satisfies the axioms, and thus turns M into a Z-module. Conversely, a Z-module
structure on an abelian group M is completely determined by the group structure,
as (4) and (2) yield that mr is indeed the r-th multiple of m.

The definition of a module is an analogue of that of a vector space, and spe-
cialises to that one when R is a field. The main (and very important!) dif-
ference is that a module need not have a basis. (The definition of a basis for
modules is exactly the same as for vector space.) For instance, the Z-module
M = Z/2Z = { [0], [1] }. Does not have a basis. The only candidate would be
[1], which generates M , but 1[1] = 3[1] = 5[1] = . . . shows that uniqueness of
representation (“linear independence”) does not hold.

1.10.6. Definition. An R-module is said to be free if it has a basis.
So for instance Rn = R× · · · ×R is free, with the usual basis as in the case of

vector spaces.
The following definition is an analogue of that of subspace
1.10.7. Definition. Let M be an R-module. A subgroup N of M is said to

be an R-submodule (or simply a submodule) if for n ∈ N and r ∈ R we have
nr ∈ N . It follows that an R-submodule is an R-module in its own right.

Quotients M/N of a module with respect to a submodule N are defined as in
vector spaces.

The following definition is an analogue of that of linear maps between vector
spaces.

1.10.8. Definition. Let R be a unital ring, and M1,M2 be two R-modules.
A map f : M1 → M2 is a morphism of modules if it is a group morphism, and

then
(mr)f = (mf)r

for m ∈ M1, r ∈ R.
As in the case of vector spaces, it follows that if f : M1 → M2 is a morphism

of modules, then the kernel ker(f) is a submodule of M1 and the image M1f is a
submodule of M2.

1.11. Algebraic integers and integral elements

A complex number is said to be an algebraic integer if it is the root of a monic
polynomial with integer coefficients. Examples: integers, i,

√
2,

√
2 +

√
3.

Therefore every algebraic integer is algebraic (over the rationals), but not vice
versa:
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1.11.1. Proposition. A rational number is an algebraic integer if and only if
it is an integer.

This result will turn out to be very useful to prove that b | a, for given integers
a and b 6= 0. “Just” prove that the rational number a/b is an algebraic integer!

Proof. If p/q, with p, q coprime integers, is a root of
xn + a1x

n−1 + · · · + an = 0,
for ai ∈ Z, then

pn + a1p
n−1q + · · · + anq

n = 0,
so that q | p, and thus q = ±1. □

Clearly roots of unity (i.e., roots of xk − 1 for some k) are algebraic integers.
The following treatment is basically taken from [Isa06].

1.11.2. Definition. Let R be a commutative ring with unity of characteristic
zero, so that R contains Z.

An element α ∈ R which is a root of a monic polynomial in Z[x] is said to be
integral.

When R = C, we fall back on the case of an algebraic integer

Note that if R is a ring with unity of characteristic zero, so that R contains Z,
and S is a subring of C which contains Z, given zi ∈ Z e yi in S, for i = 1, . . . , n,
we may consider the linear combinations (with integer coefficients)

z1y1 + . . . znyn ∈ S.

This does not yield a vector space, as Z is not a field, but what is called a Z-
module.

1.11.3. Lemma. Let R be a commutative ring with unity of characteristic zero,
so that R contains Z.

Let X = {α1, . . . , αn } be a finite set of integral elements. Then there are
(1) a subring S of R, containing Z and X, and
(2) a finite subset Y ⊆ S

such that every element of S can be written as a linear combination with integer
coefficients of the elements of Y .

Proof. Each αi will be a root of a monic polynomial in Z[x] degree di,
so that αdi

i can be written as a linear combination with integer coefficients of
1, αi, . . . , αdi−1

i .
Let

Y =
{
αk1

1 · · ·αkn
n : 0 ≤ ki < di

}
,

and let S be the set of all linear combinations, with integer coefficients, of the
elements of Y . For each j, we have two possibilities

(1) either kj < di − 1, so that

αj · (αk1
1 · · ·αkn

n ) ∈ Y,



20 1. PRELIMINARIES

(2) or kj = di − 1, and then

αj · (αk1
1 · · ·αkn

n ) = αk1
1 · · ·αdj

j · · ·αkn
n

can be written as a linear combination with integer coefficients of the
elements of Y

αk1
1 · · ·αtj · · ·αkn

n ,

per 0 ≤ t < dj.
Therefore S is closed under multiplication by all αj, and thus under multiplication
by all elements of Y . The distributive property implies that S is a subring of R. □

For the converse, we have
1.11.4. Theorem. Let R be a commutative ring with unity of characteristic

zero, so that R contains Z.
Let S be a subring of R containing Z.
Let Y ⊆ S be a finite set, such that every element of S can be written as a

linear combination with integer coefficients of the elements of Y .
Then every element of S is an algebraic integer.
Proof. For clarity, we first give the proof for the case R = C of algebraic

integers.
Let Y = { y1, . . . , yn }. Clearly Y 6= ∅, { 0 }. For each i, and each α ∈ S, we

have

(1.11.1) αyi =
n∑
j=1

aijyj,

for suitable integers aij. But then the column vector 0 6= y = [y1, . . . , yn]t ∈ Cn is
an eigenvector with respect to the eigenvalue α of the matrix A = [aij], and thus
α is a root of the characteristic polynomial

det(x1 − A)
of A, which is a monic polynomial in Z[x].

In the general case, start from (1.11.1), and consider the column vector y ∈ Sn

whose components are the yi. We have
(1.11.2) (α1 − A)y = 0.
Consider the adjugate matrix adj(x1 − A), so that

adj(α1 − A)(α1 − A) = det(A)1.
Multiplying (1.11.2) on the left by adj(x1 − A) we obtain

det(α1 − A)y = 0,
that is det(α1 − A)yi = 0 for all i, so that det(α1 − A)S = 0 and thus det(α1 −
A) = 0, as S has a unity. It follows that α is a root of the monic polynomial
det(x1 − A) ∈ Z[x]. □

1.11.5. Corollary. Sums and products of integral elements are integral ele-
ments.

Sums and products of algebraic integers are algebraic integers.
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Proof. Let α, β be integral in R. By Lemma 1.11.3, there is a subring S of
R, containing Z and α, β, such that every element of S can be written as a linear
combination with integer coefficients of the elements of a suitable finite subset Y
of S.

As α+β, α·β ∈ S, by Theorem 1.11.4 these elements are algebraic integers. □
1.11.6. Corollary. Character values are algebraic integers.

We formalize the above as follows.

1.11.7. Proposition. Let R be a commutative ring with unity of characteristic
zero, so that Z ⊆ R.

For α ∈ R, the following are equivalent:
(1) α is integral, that is, there exists n ≥ 1 and a1, . . . , an ∈ Z such that α is

a root of
xn + a1x

n−1 + · · · + an = 0.
(2) The subring

Z[α] =
{
a0 + a1α + · · · + akα

k : k ∈ N, ai ∈ Z
}

of R is finitely generated as an abelian group, that is, as a Z-module.
(3) The subring Z[α] of R is contained in a subring of R whose additive group

is a finitely generated Z-submodule of R.

Proof. If f is the polynomial of (1), and g(α) is an element of Z[α], for some
g ∈ Z[x], divide g by the monic polynomial f to get a remainder r ∈ Z[x], so that

g(α) = r(α) = r0 · 1 + r1 · α + · · · + rn−1 · αn−1.

This shows that (1) implies (2). (Note that this proof is a special case of the proof
of 1.11.3.)

Clearly (2) implies (3).
Finally, Theorem 1.11.4 shows that (3) implies (1). □

1.12. A more general, but slightly more involved, approach

This is a more general form of Proposition 1.11.7, in which in the third condi-
tion we only require a Z-submodule, not necessarily a ring.

1.12.1. Proposition. Let R be a commutative ring with unity of characteristic
zero, so that Z ⊆ R.

For x ∈ R, the following are equivalent:
(1) there exists n ≥ 1 and a1, . . . , an ∈ Z such that

xn + a1x
n−1 + · · · + an = 0.

(2) The subring

Z[x] =
{
a0 + a1x+ · · · + akx

k : k ∈ N, ai ∈ Z
}

of R is finitely generated as an abelian group, that is, as a Z-module.
(3) The subring Z[x] of R is contained in a finitely generated Z-submodule of

R.
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Proof. If (1) holds, then Z[x] is generated as a Z-module by 1, x, . . . , xn−1,
so that (2) holds.

Conversely, assume (2) holds. Since Z[x] is a finitely generated module over
the Noetherian ring Z, we have that Z[x] is Noetherian as a Z-module. (See
Lemma 1.12.3 below.) Considering the ascending chain of Z-submodules of Z[x]
generated by 1, x, . . . , xi, we see that there must be an m such that Z[x] is gen-
erated by 1, x, . . . , xn−1 as a Z-module. Hence xn is a Z-linear combination of
1, x, . . . , xn−1, so that (1) holds.

Clearly (2) implies (3). We are thus left with proving that (3) implies (2).
This follows from the general fact that a submodule of a finitely generated

Z-module (more generally, a module over a PID) is finitely generated itself, see
Section 1.14 below, but also [Jac85, Chapter 3] for a more general picture. □

1.12.2. Remark. See also [Mar18, Theorem 2, p. 11] for other slick proofs.

1.12.3. Lemma. Let A be a commutative, unital Noetherian ring.
Then each finitely generated A-module is Noetherian.

Proof. By the correspondence theorem, it is enough to prove this for the free
A-module M = An = A⊕ · · · ⊕A. We proceed by induction on n. The case n = 1
being clear, let n ≥ 2.

Let L1 ⊆ L2 ⊆ . . . be an ascending chain of A-submodules of M . Write
M = A ⊕ K, where K = An−1. Since M/K ∼= A is Noetherian, there is m such
that Li + K = Lm + K for all i ≥ m. Thus for i ≥ m we have, using Dedekind’s
identity,

Li = Li ∩ (Lm +K) = Lm + (Li ∩K).
Now the Li ∩K are submodules of K = An−1. Thus there is n ≥ m such that for
i ≥ n we have Li ∩K = Ln ∩K, so that for i ≥ n

Ln ⊆ Li = Lm + (Ln ∩K) ⊆ Ln.

□
The following result is a weak form of distributivity of intersection over sum,

and has a group version as well

1.12.4. Lemma (Dedekind’s Identity). Let A,B,C be submodules of a module
M , with A ⊇ B. Then

A ∩ (B + C) = B + (A ∩ C).

Proof. If x ∈ A ∩ (B + C), then A 3 x = b + c for some b ∈ B and c ∈ C.
Then c = x− b ∈ A+B = A, as A ⊇ B, so that c ∈ A ∩ C.

Conversely, it is clear that B + (A ∩ C) ⊆ A and B + (A ∩ C) ⊆ B + C. □
1.12.5. Exercise. Show that if A,B,C are submodules of a module M , the

identity
A ∩ (B + C) = (A ∩B) + (A ∩ C)

does not hold in general. (Hint: Take M to be a vector space of dimension 2 over
your favourite field, and A,B,C be three distinct subspaces of dimension 1.)
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1.12.6. Proposition. The set of the integral elements in R is a subring of R.

Proof. Let x, y be integral, with
xn + a1x

n−1 + · · · + an = 0 = ym + b1y
m−1 + · · · + bm,

for some ai, bi ∈ Z.
Consider the subring Z[x, y] of R. Each element of Z[x, y] can be written as

α =
k∑
i=0

fi(x)yi,

for some k, and some polynomials fi ∈ Z[y].
Consider the polynomial ring Z[x][z] with coefficients in Z[x]. Dividing the

polynomial
k∑
i=0

fi(x)zi,

by the (monic) polynomial
zm + b1z

m−1 + · · · + bm,

and evaluating at y, we obtain that

α =
m−1∑
i=0

f ′
i(x)yi

for some
f ′
i(x) =

n−1∑
j=0

cijx
j

for some cij ∈ Z. It follows that Z[x, y] is generated as a Z-module by the nm
elements xjyi. Since x+ y, xy ∈ Z[x, y], we are done. □

1.12.7. Remark. The proof could be made slicker using tensor products, which
I may have to use anyway for the product of characters.

1.13. Roots of unity, and other algebraic integers

1.13.1. Lemma. Let E be a subfield of C, such that E/Q is a Galois extension.
Suppose that Gal(E/Q) is abelian.

Then for α ∈ E and g ∈ Gal(E/Q) we have |αg |2 = (|α |2)g.

Note that since E/Q is a Galois extension, we have |α |2 = αα ∈ E.
Proof. Let c be the restriction to E of the complex conjugate. Since Gal(E/Q)

is abelian, we have αgc = αcg, so that
|αg |2 = αgαg = αgαgc = αgαcg = αgαg = (αα)g = (|α |2)g. □

1.13.2. Remark. The Lemma does not hold true anymore if Gal(E/Q) is
non-abelian.

Let E/Q be the splitting field of f = x3 − 2. Since f is irreducible over Q (by
Eisenstein, say), we have that 3 | |E : Q |. Now the roots of f are α, αω, αω2, with
ω ∈ C \ R a primitive third root of unity, thus Q(α) ⊊ E, and thus |E : Q | = 6.
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Since an element of G = Gal(E/Q) is determined by the permutation of the roots
of f it induces, G is isomorphic to S3.

Now conjugacy induces the 2-cycle c = (αω, αω2) ∈ G. Consider the 3-cycle
g = (α, αω, αω2) ∈ G. Then

αgc = (αω)c = αω2,

while
αcg = αg = αω.

It follows that
|αg |2 = αgαg = αωαω2 = α2 6= α2ω2 = (α2)g = (αα)g = (|α |2)g.

1.13.3. Lemma ([Ser16, Lemma 8.6]). Let z1, . . . , zn ∈ C have all absolute
value 1.

If | z1 + · · · + zn | = n, then z1 = · · · = zn.

Proof. Let zj = eiφj , for φj ∈ R/2πZ, and z be the sum of the zj. Then

zz =
∑
j,k

ei(φj−φk) = n+ 2
∑
j<k

cos(φj − φk),

as for j < k, setting φ = φj − φk, we have

ei(φj−φk) + e−i(φk−φj) = eiφ + e−iφ

= cos(φ) + i sin(φ) + cos(−φ) + i sin(−φ)
= cos(φ) + i sin(φ) + cos(φ) − i sin(φ)
= 2 cos(φj − φk).

Note first that we cannot have cos(φj − φk) = −1 for some j, k, as this would
mean φj = φk + π, so that zj + zk = eiφj + eiφjeiπ = eiφj − eiφj = 0. Clearly this
implies | z | ≤ n− 2.

If the φj are not all equal, then one of the cosines is different from 1, and then
less then 1 in absolute value, so that

n2 = zz =

∣∣∣∣∣∣n+ 2
∑
j<k

cos(φj − φk)

∣∣∣∣∣∣ ≤ n+ 2
∑
j<k

| cos(φj − φk) | < n+ 2
(
n

2

)
= n2,

a contradiction. □
Alternative Proof, same notation. By the triangle inequality, if the

absolute value of the sum of all the zj is n, then the absolute value of the sum of
any m distinct zj must be m.

In particular, for every j 6= k we must have that

zj + zk = eiφj + eiφk = eiφk(1 + ei(φj−φk)) = eiφk((1 + cos(φ)) + i sin(φ)),
where φ = φj − φk, has absolute value 2, that is,

4 = (1 + cos(φ))2 + sin(φ)2 = 1 + cos(φ)2 + sin(φ)2 + 2 cos(φ) = 2(1 + cos(φ)),
which yields cos(φ) = 1, that is, φ = φj − φk = 0, as required. □
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1.13.4. Lemma. Let ω1, . . . , ωn ∈ C be roots of unity.
If

(1.13.1) α = ω1 + · · · + ωn
n

is an algebraic integer, then either α = 0, or ω1 = · · · = ωn = α.

Proof. Let the ωi be all k-th roots of unity, say. Let E be the splitting field
over Q of xk − 1. We have that E/Q is a Galois extension, with abelian Galois
group Gal(E/Q), and α ∈ E. An element g ∈ Gal(E/Q) maps roots of unity to
roots of unity, so αg has the same form.

Note that

|α | = |ω1 + · · · + ωn |
n

≤ |ω1 | + · · · + |ωn |
n

= 1,

and thus the same holds for the conjugates αg.
Now the norm (in the sense of field theory)

(1.13.2)
∏

g∈Gal(E/Q)
αg

of α is fixed by Gal(E/Q), and thus is in Q. It is an algebraic integer, as a product
of algebraic integers, and thus it is an integer. Each term of (1.13.2) is of the same
form as α, and thus has absolute value at most 1. It follows that the absolute
value of (1.13.2) is at most 1.

Now there are two possibilities.
(1) (1.13.2) might be zero, so that one factor is zero, and thus they are all

zero, so that α = 0.
(2) (1.13.2) is ±1, and thus each factor, which has absolute value at most 1,

must have absolute value 1. In particular

|ω1 + · · · + ωn | = n.

But this can hold only if all ωi are equal, as per the previous Lemma.
□

1.14. Finitely generated Z-modules

Of course Z-modules are the same thing as abelian groups.
We want to prove

1.14.1. Theorem. Let A be a Z-module, which is generated by n elements. Let
B be a submodule of A.

Then B can be generated by ≤ n elements.
If A is free, then so is B.

Proof. We first reduce to the free case. A free Z-module of rank n is a Z-
module that has a basis, so that, very much as in the case of vector spaces, it is
isomorphic to Zn.
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Since A is n-generated, there is a surjective morphism of Z-modules f : Zn →
A. Then f−1(B) is a submodule of Zn, and f |f−1(B): f−1(B) → B is a surjective
morphism.

It is therefore enough to show that a submodule C of Zn is free on k ≤ n
generators.

Proceeding by induction on n, the basis is provided by the fact that every
subgroup (i.e. Z-submodule) of Z is of the form nZ, which is either zero, or
isomorphic to Z. (And it turns out that this proof holds more generally for modules
over any PID.)

So suppose n ≥ 2, and consider the first projection

π1 : Zn → Z
(z1, z2, . . . , zn) 7→ z1,

with kernel
K = { 0 } × Z × · · · × Z ∼= Zn−1.

The induction hypothesis yields that C ∩ K is free of some rank h ≤ n − 1.
If π1(C) = { 0 }, that is, C ≤ K, we have C = C ∩ K, and we are finished.
If π1(C) 6= { 0 }, then π1(C) = 〈 z 〉, for some z 6= 0. Let c ∈ C be such that
π1(c) = z. We claim that

C = 〈 c 〉 ⊕ (C ∩K),
which will show that C is free of rank h ≤ n.

If x ∈ C, then π1(x) = λz for some λ ∈ Z, so that π1(x − λc) = 0, and
x− λc ∈ C ∩K. This shows that C = 〈 c 〉 + (C ∩K).

If x ∈ 〈 c 〉 ∩ (C ∩K), then x = λc for some λ ∈ Z, and 0 = π1(x) = λz. Since
z 6= 0 we get λ = 0, so that c = 0. □

1.15. Tensor Products

This is basically taken from [Lan02].

1.15.1. The commutative case. Let us start with a commutative ring R.
Let M1, . . . ,Mn, N be R-modules. (Since R is commutative, left and right modules
are the same.)

A map
f : M1 × · · · ×Mn → N

is said to be multilinear if for each i and m1, . . .mi−1,mi+1, . . . ,mm one has that
the map

fi : Mi → N

x 7→ f(m1, . . . ,mi−1, x,mi+1, . . . ,mm)

is a morphism of R-modules. A tensor product of the Mi is a construction that
allows one to replace the whole of multilinear maps with just one of them, and
then linear maps, that is, plain morphisms of modules.
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1.15.1. Definition. Let M1, . . . ,Mn, N be R-modules. A tensor product of
the Mi is an R-module

M1 ⊗ · · · ⊗Mn.

together with a multilinear map
ι : M1 × · · · ×Mn → M1 ⊗ · · · ⊗Mn,

such that for every R-module N and every multilinear map
f : M1 × · · · ×Mn → N

there is a unique morphism of R-modules
g : M1 ⊗ · · · ⊗Mn → N

that makes the diagram (1.15.1) commute.

(1.15.1) M1 × · · · ×Mn

ι

��

f
// N

M1 ⊗ · · · ⊗Mn

g

88

One writes
ι(m1, . . . ,mn) = m1 ⊗ · · · ⊗mn.

Familiar arguments show that a tensor product, if it exists, is unique up to an
isomorphism of modules.

Existence can be proved as follows. Start with the free module M which has
as basis the elements of

M1 × · · · ×Mn.

Consider the submodule K of M generated by the following elements

(m1, . . . ,mi−1, x+ y,mi+1, . . . ,mm)
− (m1, . . . ,mi−1, x,mi+1, . . . ,mm) − (m1, . . . ,mi−1, y,mi+1, . . . ,mm)

and
(m1, . . . ,mi−1, rx,mi+1, . . . ,mm) − r(m1, . . . ,mi−1, x,mi+1, . . . ,mm)

for all i, mj ∈ Mj and x, y ∈ Mi, and r ∈ R. We claim the quotient module M/K
is a tensor product of the Mi. In fact, as M1 × · · · ×Mn is a subset of M , we can
compose the inclusion map with the projection M → M/K to get

ι : M1 × · · · ×Mn → M/K.

This is a multilinear map, by the very definition of K. It is also a tensor product.
In fact, if

f : M1 × · · · ×Mn → N

is a multilinear map, this can be extended linearly to a morphism of modules
f ′ : M → N . The generators of K are visibly in ker(f ′), so that we obtain a
morphism of modules g : M/K → N , which satisfies by construction
g(ι(m1, . . . ,mn) = g((m1, . . . ,mn) +K) = f ′(m1, . . . ,mn) = f(m1, . . . ,mn),
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so that the diagram commutes.
Write

ι(m1, . . . ,mm) = m1 ⊗ · · · ⊗mm ∈ M1 ⊗ · · · ⊗Mn.

We will see that in general M1 ⊗ · · · ⊗Mn is not the set of the m1 ⊗ · · · ⊗mm, but
by construction these elements do generate it,

Again by construction we have, for a ∈ R,
a(m1 ⊗ · · · ⊗mm) = (am1) ⊗ · · · ⊗mm = · · · = m1 ⊗ · · · ⊗ (amm).

The tensor product of two non-trivial modules can well be trivial. For instance
Z/2Z ⊗Z Z/3Z = { 0 }

where ⊗Z means that this is a tensor product of Z-modules. In fact, for a, b ∈ Z
we have

[a]2 ⊗ [b]3 = (3[a]2) ⊗ [b]3 = [a]2 ⊗ (3[b]3) = [a]2 ⊗ [0]3 = 0.

1.15.2. Exercise.
(1) Show that if gcd(m,n) = 1, then

Z/mZ ⊗Z Z/nZ = { 0 } .
(2) Show that

Z/mZ ⊗Z Z/nZ ∼= Z/ gcd(m,n)Z.
(Hint: Show that 1 ⊗ 1 generates Z/mZ ⊗Z Z/nZ. Therefore the mor-
phism Z → Z/mZ ⊗Z Z/nZ which maps x 7→ k([1]m ⊗ 1n) is surjective.
What is its kernel? Certainly the kernel is contained in gcd(m,n)Z, be-
cause if [k]m × [1]n = 0 = [1]m ⊗ [k]n, then m | k and n | k, so that
gcd(m,n) | k. Now the map Z/mZ × Z/nZ → Z/ gcd(m,n)Z given by
([a]m, [b]n) 7→ [an]gcd(m,n) is well-defined, bilinear and surjective, so it in-
duces an epimorphism Z/mZ ⊗Z Z/nZ → Z/ gcd(m,n)Z. Put the two
things together.)

1.15.2. The case of vector spaces. The case of vector spaces is much more
manageable. Let V,W be vector spaces of dimension n,m over a field F , and bases
v1, . . . , vn and w1, . . . , wm. We first give an alternative construction of the tensor
product V ⊗F W . Consider the set Bil(V,W ;F ) of bilinear maps V × W → F .
This is a vector space over F , with the usual operations on the images. By
definition of the tensor product, there is a bijection between Bil(V,W ;F ) and the
dual (V ⊗W )∗. So let us define V ⊗W = Bil(V,W ;F )∗, and let us show that this
has indeed the properties of a tensor product.

First note that a basis of Bil(V,W ;F ) is given by the elements Eij

(vs, wt)Eij =

1 if s = i, t = j,
0 otherwise.

Consider the dual basis vi ⊗ wj = E∗
ij of Bil(V,W ;F )∗. The map defined by

ι : V ×W → Bil(V,W ;F )∗

(
∑

aivi,
∑

bjwj) 7→
∑

aibj(vi ⊗ wj)



1.15. TENSOR PRODUCTS 29

is bilinear, and if f : V ×W → U is a bilinear map, for some vector space U , then
the linear map g : V ⊗W → U defined by

(vi ⊗ wj)g = (vi, wj)f

satisfies indeed

(
∑

aivi,
∑

bjwj)ιg = (
∑

aibj(vi ⊗wj))g =
∑

aibj(vi, wj)f = (
∑

aivi,
∑

bjwj)f.

We have obtained

1.15.3. Proposition. Let V,W be vector spaces of dimension n,m over a field
F , and bases v1, . . . , vn and w1, . . . , wm.

Then dim(V ⊗F W ) = nm, and a basis of V ⊗ W is given by the ι(vi, wj) =
vi ⊗ uj.

Let now X ∈ EndF (V ), Y ∈ EndF (W ). Then the map

V ×W → V ⊗W

(v, w) 7→ (vX) ⊗ (wY )

is readily seen to be bilinear. It follows that it induces an element of End(V ⊗W )
given by

(1.15.2) X ⊗ Y : v ⊗ w 7→ (vX) ⊗ (wY ).

This map is called the tensor, or Kronecker, product of X and Y . If X,Y are
given in terms of matrices, then one checks that the elements of X × Y , which is
a (nm) × (nm) matrix, are the xijykl. By choosing an appropriate ordering of the
basis of V ⊗W , X ⊗ Y can be written as a block matrix

x11Y x12Y . . . x1nY
x21Y x22Y . . . x2nY

. . .
xn1Y xn2Y . . . xnnY

 ,
or also (with respect to a different, appropriate ordering of the basis), as

y11X y12X . . . y1mX
y21X y22X . . . y2mX

. . .
ym1X ym2X . . . ymnX

 .
From either form one gets that

(1.15.3) trace(X ⊗ Y ) = trace(x11Y ) + · · · + trace(xnnY ) =
= x11 trace(Y ) + · · · + xnn trace(Y ) = trace(X) trace(Y ).

From the definition (1.15.2) we obtain immediately the following property, which
will be important in what follows.

(1.15.4) (X1 ⊗X2)(Y1 ⊗ Y2) = (X1Y1) ⊗ (X2Y2).
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1.15.3. The non-commutative case. When R is a non-commutative ring,
one can do the tensor product MR ⊗R RN of a right module M = MR and a left
module N = RN (the indices serve to remember which is which). This is defined
so that its generators satisfy

xr ⊗ y = x⊗ ry,

for x ∈ M , y ∈ N , r ∈ R. Note that the equalities, for r, s ∈ R,
x(rs) ⊗ y = (xr)s⊗ y = xr ⊗ sy = x⊗ r(sy) = x⊗ (rs)y

show why one has to take one right and one left module. Note also that MR⊗RRN
is only an abelian group (but more about this in a second), unless R is commu-
tative, so that right and left modules are one and the same thing. In fact if one
tries and define

r(x⊗ y) = xr ⊗ y = x⊗ ry

one sees that this makes MR ⊗R RN into both a right and left module.
This will have an important application to induced representations, where we

will have a situation like this. Let G be a finite group, H ≤ G, and V a (right)
C[H] module. Consider the tensor product
(1.15.5) V ⊗C[H] C[G].
Here C[G] is a left C[H]-module in a natural way. Since C[G] is also naturally a
right C[G]-module, we can make (1.15.5) into a right C[G]-module via

(v ⊗ r)s = v ⊗ (rs),
for r, s ∈ C[G].

Actually, if R,S, T are rings, RMS is a left R-module and a right S-module
(such a beast is called a bimodule) and SMT is a left S-module and a right T -
module, then

RMS ⊗S SMT

becomes a left R-module and a right T -module.
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CHAPTER 2

Series

For further details of the arguments of this section, see [Rob96].
In this section G will be a finite group.

2.1. Series

A series in G is a sequence of distinct subgroups
(2.1.1) 1 = H0 ⊴ H1 ⊴ . . . ⊴ Hn = G,

each normal in the next.
One says that the series (2.1.1) is normal if each Hi ⊴ G.

2.1.1. Exercise. Show that the sequence
1 < 〈 (12)(34) 〉 < 〈 (12)(34), (13)(24) 〉 < S4

is a series which is not normal.

2.2. Ω-groups and Ω-series

The concept of an Ω-series is sometimes useful.

2.2.1. Definition. Let G be a group, Ω a set, and
α : G× Ω → G

a function.
A right operator group is a triple (G,Ω, α), such that for each ω ∈ Ω the map

g 7→ (g, ω)α
is an endomorphism of G.

One says that G is an Ω-group, and writes simply gω for (g, ω)α.
An Ω-subgroup is a subgroup H ≤ G such that hω ∈ H for each h ∈ H and

ω ∈ Ω.
(1) If Ω = ∅, we get simply a group, and the Ω-subgroups of G are just the

subgroups of G.
(2) If Ω = Inn(G), then the Ω-subgroups are the subgroups that are normal

in G.
(3) If Ω = Aut(G), then the Ω-subgroups are the so-called characteristic

subgroups.
(4) If Ω = End(G), then the Ω-subgroups are the so-called fully invariant

subgroups.

2.2.2. Exercise. Find examples of groups G and subgroups H ≤ G such that
33
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(1) H is normal, but not characteristic in G.
(2) H is characteristic, but not fully invariant in G.

(Hint: For the first question, one can consider an elementary abelian group
of order p2, where p is a prime, that is, a group of the form Cp × Cp, where Cp,
where Cp is cyclic of order p.

For the second question, consider the group A5, which is known to be simple,
and a group B = 〈 b 〉 of order 2, say, and the product G = A5 × B. Then
B = Z(G) is characteristic in G. But the endomorphism φ, which has kernel A5
and maps b 7→ (12)(34), does not map B into B.

Alternatively, take G to be the dihedral group of order 8. Show that it has a
unique cyclic subgroup C of order 4, which is thus characteristic. Show that C is
not fully invariant.)

An Ω-series is a series where each term is an Ω-subgroup.
It follows that a series is normal if and only if it is an Inn(G)-series.

2.3. Ω-composition series

A series is a refinement of another if it can be obtained by inserting further
subgroups. For instance

1 < 〈 (12)(34) 〉 < 〈 (12)(34), (13)(24) 〉 < S4

refines
1 < 〈 (12)(34), (13)(24) 〉 < S4.

An Ω-series which has no proper refinement is called a Ω-composition series.
If Ω = ∅ one speaks simply of a composition series. If Ω = Inn(G), one speaks of
a principal series.

It follows from the third isomorphism theorem that the factors Hi+1/Hi of a
composition series are simple groups. One sees that the factors of a principal series
are characteristically simple, that is, they have no proper, non-trivial characteristic
subgroups.

2.3.1. Proposition. Let G 6= 1 be a finite group which is characteristically
simple.

Then there is a simple group S (abelian or non-abelian) and a positive integer
such that

G ∼= Sn = S × · · · × S.

Proof. Let us first consider the special case when G is abelian. Let p be a
prime dividing its order. Then a Sylow p-subgroups is normal, and thus charac-
teristic in G, so that G is a p-group. The subgroup

{ g ∈ G : gp = 1 }
is characteristic in G, so that G is elementary abelian, so G = Sn where S is cyclic
of order p.

In the general case, let N be a minimal normal subgroup of G. Then for
each automorphism φ of G such that N 6= Nφ one has N ∩ Nφ = 1, so that
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[N,Nφ] ≤ N ∩Nφ = 1. (Note that Nφ ⊴ G, as Nφι(g) = N ι(gφ−1 )φ = Nφ, see the
proof of Exercise 1.8.5.) SinceG = 〈Nφ : φ ∈ Aut(G) 〉, one sees (argument below)
that G is a direct product of some of the Nφ, including N . Thus if 1 6= K ⊴ N ,
then K ⊴ G, so K = N and N is simple.

To see that G is a direct product of some of the Nφ, start with M = N . If
M = G, we are done. Now let M be a direct product of some of the Nφ, including
N , so that M ⊴ G. If M < G, there is a Nψ ≰M . Since M ∩Nψ 6= Nψ, we have
M ∩Nψ = 1 by the minimality of Nψ, so that MNψ = M ×Nψ. □

And now for the converse.

2.3.2. Proposition. A direct product of isomorphic simple groups is charac-
teristically simple.

2.3.3. Exercise. Using Proposition 1.9.3, show that if G is an elementary
abelian p-group, for a prime p, then its automorphism group acts transitively on
the non-zero elements.

(Hint: One has to show that given a finite-dimensional vector space V (over
any field, actually), and two non-zero vectors v, w ∈ V , there is a linear map
taking v to w.)

Proof. If the simple group S is abelian, then it has order a prime p, so that
G is elementary abelian, and one can use Exercise 2.3.3.

So let S be non-abelian simple, so that G = Sn = T1 × . . . Tn for some n > 1,
the case n = 1 being trivial.

Let L 6= 1 be a normal subgroup of G, and let
1 6= (s1, s2, . . . , sn) ∈ L,

where we may assume s1 6= 1. Since Z(S) = { 1 }, there is x ∈ S such that sx1 6= s1.
Therefore

(s1, s2, . . . , sn)−1 · (s1, s2, . . . , sn)(x,1,...,1) = (y, 1, . . . , 1)
for y = s−1

1 sx1 6= 1. Thus L ∩ T1 6= 1. Since T1 is minimal normal, we have
L ≥ T1. Note that we have proved so far is that the Ti are the unique minimal
normal subgroups of G. This is a special case of the Krull-Remak-Schmidt theory,
see [Rob96, p. 80].

Now suppose L is indeed characteristic in G. It remains to note that there is a
subgroup of Aut(G) isomorphic to Sn, which permutes the Ti. (See Exercise 2.3.4
just below.) Therefore L = G. □

2.3.4. Exercise. Let S be a set, n ≥ 1 an integer, G = Sn be the direct product
of n copies of S.

(1) Show that the assignment, for σ ∈ Sn,
(s1, . . . , sn)σ = (s1σ−1 , . . . , snσ−1)

defines a right action of Sn on G.
(Hint: This is slightly tricky: the inverse is needed to make this into a
right action.)
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Let now S be a group, so that G is a direct product.
(2) Show that for each σ ∈ Sn the map σ′ given by

(s1, . . . , sn) 7→ (s1, . . . , sn)σ

defines an automorphism of the group G, and actually σ 7→ σ′ is a morphism
Sn → Aut(G).

2.4. Uniqueness of the factors of an Ω-composition series

2.4.1. Theorem. Let G be a finite Ω-group. Suppose G has two Ω-composition
series.

Then the factors of the two series are pairwise isomorphic.

Proof. Let
(2.4.1) 1 = H0 ⊴ H1 ⊴ . . . ⊴ Hn−1 ⊴ Hn = G,

and
(2.4.2) 1 = K0 ⊴ K1 ⊴ . . . ⊴ Km−1 ⊴ Km = G

be the two Ω-composition series, and proceed by induction on the order of G.
If Hn−1 = Km−1, we are done by induction. If Hn−1 6= Km−1, consider the Ω-
subgroup L = Hn−1 ∩Km−1, and refine the Ω-series

L ⊴ Hn−1 ⊴ G, L ⊴ Km−1 ⊴ G

to two Ω-composition series H and K, by taking the same refinement of L for both.
Since Hn−1Km−1 is an Ω-subgroup properly containing both Hn−1 and Km−1, we
have Hn−1Km−1 = G. Therefore

(2.4.3) G/Hn−1 = Hn−1Km−1/Hn−1 ∼= Km−1/L, and
G/Km−1 = Hn−1Km−1/Km−1 ∼= Hn−1/L.

Proceeding by induction, the factors of (2.4.1) and H are pairwise isomorphic; they
are the factors of the Ω-series for L, plus Hn−1/L and G/Hn−1. Also, the factors
of (2.4.2) and K are pairwise isomorphic; they are the factors of the Ω-series for
L, plus Km−1/L and G/Km−1. By (2.4.3), we are done. □

2.4.2. Exercise. The factors of an Ω-composition series do not determine the
group uniquely. For instance both C6 and S3 have two composition factors which
are cyclic of orders 2, 3, and both C4 and C2 × C2 have two composition factors
which are cyclic of orders 2.
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Soluble groups

3.1. Commutators

3.1.1. Definition. Let G be a group, a, b ∈ G. The commutator of a, b is
[a, b] = (ba)−1ab = a−1b−1ab.

The name is justified by the

3.1.2. Lemma. Let G be a group, a, b ∈ G. The following are equivalent
(1) ab = ba, and
(2) [a, b] = 1.

3.1.3. Exercise. Show that [a, b]−1 = [b, a].

3.1.4. Definition. The subgroup
G′ = 〈 [a, b] : a, b ∈ G 〉

of G generated by the commutator is referred to as the derived subgroup or the
commutator subgroup.

3.1.5. Remark. In general not all elements of G′ will be commutators, but just
products of commutators. But it has been proved that if G is a finite, nonabelian
simple group, then every element of G′ is a commutator [LOST10].

3.1.6. Exercise. Show that S ′
n = An for all n > 1.

(Hint:
(1) Show that

(a) (132)(1234) = (12)(34),
(b) (132)(123 . . . k) = (145 . . . k), for k ≥ 5,
(c) (12)(34) = (123)(143).

(2) Show that An is generated by the 3-cycles.
(3) Show that [(12), (23)] = (123).

)

3.1.7. Exercise. Show that A′
n = An for n ≥ 5.

More generally, if A,B ≤ G, then we define the subgroup
[A,B] = 〈 [a, b] : a ∈ A, b ∈ B 〉 .

3.1.8. Exercise.
(1) Prove the identities, for a, b, c in a group.

[a, bc] = [a, c][a, b]c, [ab, c] = [a, c]b[b, c].
37
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(2) Prove that if A,B are subgroups of a group G, then A,B ≤ NG([A,B]).

Note the following

3.1.9. Lemma.
(1) If G,H are groups, φ : G → H is a morphism, and a, b ∈ G, then

φ([a, b]) = [φ(a), φ(b)].
(2) G′ is a fully invariant (and thus characteristic) subgroup of G, that is,

φ(G′) = φ(G)′ ≤ G′ for all φ ∈ End(G).
(3) If K ≤ G, then the following are equivalent

(a) K ⊴ G, and
(b) [K,G] ≤ K.

Proof. The first statement is clear, as a morphism respects products and
inverses.

The second one follows immediately.
As to the third one, just note that for a ∈ K and b ∈ G we have

ab = b−1ab = a[a, b]. □
Note the following

3.1.10. Lemma. Let G be a group, H ≤ N ≤ G.
(1) If H is characteristic in N , and N is characteristic in G, then H is

characteristic in G.
(2) If H is characteristic in N , and N ⊴ G, then H ⊴ G.
(3) If H ⊴ N ⊴ G, then H is not necessarily normal in G.

Proof. For the first claim, note that the restriction to N is a well-defined
automorphism of N , and thus leaves H invariant.

For the second claim, consider for each g ∈ G, the map
N → N

n 7→ g−1ng.

This is well defined, as N ⊴ G, and it is an automorphism of N . Since H is
characteristic in N , we have g−1hg ∈ H for all g ∈ G and h ∈ H, that is, H ⊴ G.

For the last claim, take G = A4, N = 〈 (12)(34), (13)(24) 〉 to be the 2-Sylow
subgroups of G, and H = 〈 (12)(34) 〉. □

It is easy to see that G/G′ is abelian. More generally, we have

3.1.11. Proposition. Let G be a group, H ≤ G. The following are equivalent:
(1) H ⊴ G and G/H is abelian, and
(2) G′ ≤ H.

Thus G′ is the smallest normal subgroup of G with abelian quotient.
Proof. Assuming H ⊴ G and G/H abelian, we have for all a, b ∈ G

H = [aH, bH] = [a, b]H,
so that [a, b] ∈ H and thus G′ ≤ H.
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Conversely if G′ ≤ H, then [H,G] ≤ G′ ≤ H, so H ⊴ G, and for a, b ∈ G we
have

[aH, bH] = [a, b]H = H.

□

3.2. The derived series and soluble groups

3.2.1. Definition. Given a group G, one constructs its derived sequence
G0 = G,G(1) = G′, . . . , G(n+1) = (Gn)′, . . .

G is said to be soluble (solvable in American English) if there is n such that
G(n) = { 1 }. (So the derived sequence is a series, according to our definitions.)

3.2.2. Remark. The name comes from Galois theory, as an equation is soluble
by radicals if and only if its Galois group is soluble.

3.2.3. Proposition. Let G be a group. The following are equivalent:
(1) G is soluble;
(2) there is a normal series G = G0 ≥ G1 ≥ · · · ≥ Gm = { 1 } with Gi/Gi+1

abelian for all i;
(3) there is a series G = G0 ≥ G1 ≥ · · · ≥ Gm = { 1 } with Gi/Gi+1 abelian

for all i;

Proof. If the first condition holds, then Gi = G(i) satisfies the second one. In
fact one proves by induction on i that all G(i) are characteristic (and thus normal)
in G, appealing to Lemma 3.1.9(2) and Lemma 3.1.10(1).

If the second condition holds, then the series Gi satisfies the third one.
Let now Gi be a series as in (3). Then G1 ⊴ G and G/G1 is abelian, so that

G′ = G(1) ≤ Gi. Proceeding by induction, assume G(i) ≤ Gi. Since Gi+1 ⊴ Gi, and
Gi/Gi+1 is abelian, we have G(i+1) = (G(i))′ ≤ G′

i ≤ Gi+1, so that G(n) = { 1 }. □
3.2.4. Proposition. Let G be a finite group. Then the following are equiva-

lent.
(1) G is soluble,
(2) there is a composition series whose factors are of prime order,
(3) the factors of any composition series are of prime order.

Proof. If G is soluble, refine the derived series to a composition series.
If a composition series has all factors of prime order, then by Theorem 2.4.1

this holds for any composition series.
A composition series with factors of prime order satisfies (3) of Proposition 3.2.3.

□
In a similar manner one proves

3.2.5. Proposition. Let G be a finite group. Then the following are equiva-
lent.

(1) G is soluble,
(2) there is a principal series whose factors are elementary abelian.,
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(3) the factors of any principal series are elementary abelian.

3.2.6. Theorem. Let G be a group.
(1) If G is soluble and H ≤ G, then H is soluble.
(2) If G is soluble and N ⊴ G, then G/N is soluble.
(3) If G is soluble, and φ : G → K is a morphism, then φ(K) is soluble.
(4) If N ⊴ G, and both N and G/N are soluble, then G is soluble.

Proof. If G is soluble and H ≤ G, just note that H(i) ≤ G(i) for all i.
If G is soluble and N ⊴ G, consider a series Gi as in Proposition 3.2.3(2).

Then GiN ⊴ G for all i, so that
GiN

N
⊴ G

N
,

and(
GiN

N

)
/
(
Gi+1N

N

)
∼=

GiN

Gi+1N
= GiGi+1N

Gi+1N
= Gi

Gi ∩Gi+1N
∼=
(
Gi

Gi+1

)
/

(
Gi ∩Gi+1N

Gi+1

)
is abelian, as a quotient of the abelian group Gi/Gi+1.

(3) follows from the first isomorphism theorem.
As to (4), let Xi/N be a series with abelian quotients for G/N , and Yi be a

series with abelian quotients for G. Since
Xi−1/N

Xi/N
∼=
Xi−1

Xi

,

we have that the series obtained by starting with the Xi, and continuing with the
Yi, is a series with abelian quotients for G. □
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Nilpotent groups

4.1. Central series and nilpotent groups

4.1.1. Definition. A chain G = G1 ≥ G2 ≥ · · · ≥ Gn ≥ . . . is said to be
central if for each i, we have [Gi, G] ≤ Gi+1.

If Gn = { 1 } for some n, that we speak of a central series.

Note that the condition [Gi, G] ≤ Gi+1 implies [Gi, G] ≤ Gi, that is Gi ⊴ G
for all i.

4.1.2. Definition. A group G is said to be nilpotent if it has a central series.

4.1.3. Lemma. A nilpotent group is soluble.

Proof. The quotients of a central series are abelian, as [Gi, Gi] ≤ [Gi, G] ≤
Gi+1. □

4.1.4. Exercise. Show that S3, A4, S4 are soluble but not nilpotent.

4.1.5. Lemma. For a group G and a series G = G0 ≥ G1 ≥ · · · ≥ Gn = { 1 },
the following are equivalent

(1) the series is central, and
(2) for each i we have Gi ⊴ G, and

Gi−1

Gi

≤ Z
(
G

Gi

)
.

Recall that for a group G

Z(G) = { z ∈ G : zx = xz for all x ∈ G }
is the centre (center) of G.

4.1.6. Exercise. Show that the two conditions of Lemma 4.1.5 are equivalent,
noting that z ∈ Z(G) iff [z, x] = 1 for all x ∈ G.

4.1.7. Definition. The lower central chain of the group G is defined by
γ1(G) = G, and γi+1(G) = [γi(G), G], for i ≥ 1. If γn(G) = { 1 } for some n,
we speak of the lower central series.

The upper central chain of the group G is defined by Z0(G) = { 1 }, and
Zi(G)
Zi−1(G)

= Z

(
G

Zi−1(G)

)
for i ≥ 1. If Zn(G) = G for some n, we speak of the upper central series.

4.1.8. Exercise.
41
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(1) Show that these are indeed two central series.
(2) Show that γ2(G) = G′ and Z1(G) = Z(G).

4.1.9. Theorem. Let G be a group, and
G = G1 ≥ G2 ≥ · · · ≥ Gn = { 1 }

a central series.
Then for each i one has

γi(G) ≤ Gi ≤ Zn−i(G).

Proof. We have γ1(G) = G = G1, and then proceeding by induction
γi+1(G) = [γi(G), G] ≤ [Gi, G] ≤ Gi+1.

We have Gn−1/Gn ≤ Z(G/Gn) = Z1(G)/ { 1 }, so that Gn−1 ≤ Z1(G) = Z(G).
Proceeding by backward induction, [Gi, G] ≤ Gi+1 ≤ Zn−i−1(G), so that

GiZn−i−1(G)/Zn−i−1(G) ≤ Z(G/Zn−i−1(G)) = Zn−i(G)/Zn−i−1(G),
that is, Gi ≤ Zn−i(G). □

4.1.10. Corollary. Let G be a group. The following are equivalent
(1) G is nilpotent, that is, it has a central series,
(2) the lower central series terminates at { 1 },
(3) the upper central series terminates at G.

4.1.11. Exercise. Compute the lower and upper central chains for S3, A4, S4.

4.1.12. Theorem. Let G be a group.
(1) If G is nilpotent and H ≤ G, then H is nilpotent.
(2) If G is nilpotent, and φ : G → K is a morphism, then φ(G) is nilpotent.
(3) If G is nilpotent and N ⊴ G, then G/N is nilpotent.

4.1.13. Exercise. Show that item (4) of Theorem 3.2.6 does not hold with
soluble replaced by nilpotent.

Proof of Theorem 4.1.12. If H ≤ G, we have γi(H) ≤ γi(G) for all i.
We have already seen that φ(γ2(G)) = φ(G′) = φ(G)′ = γ2(φ(G)). Proceeding

by induction, we find
φ(γi+1(G)) = φ([γi(G), G]) = [φ(γi(G)), φ(G)] = [γi(φ(G)), φ(G)] = γi+1(φ(G)).

□
4.1.14. Lemma. Let G be a nilpotent group. If H < G, then H < NG(H).

Recall that
NG(H) = {x ∈ G : hx ∈ H for all h ∈ H } = {x ∈ G : [h, x] ∈ H for all h ∈ H }

is the largest subgroup of G in which H is normal.

Proof. Let i the the smallest number such that γi(G) ≤ H, so that γi−1(G) ≰
H. Then [γi−1(G), H] ≤ [γi−1(G), G] = γi(G) ≤ H, so that γi−1(G) ≤ NG(H). □
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4.2. Finite nilpotent groups

4.2.1. Lemma (Frattini argument).
(1) Suppose the group G acts on the set Ω, and H ≤ G acts transitively on

Ω. Then for α ∈ Ω we have G = GαH.
(2) Let X be a finite group, H ⊴ X and let S a Sylow p-subgroup of H.

Then X = NX(S)H.
(3) Let G be a finite group, and S be a Sylow p-subgroup of G.

Then NG(NG(S)) = NG(S).
Proof. If g ∈ G, then since H is transitive there is h ∈ H such that α =

(αg)h = αgh, so that gh ∈ Gα and g ∈ GαH.
Let Ω be the set of Sylow p-subgroup of H. Now X acts by conjugation on Ω,

as H ⊴ X; by Sylow’s theorems, H acts transitively on Ω; the stabiliser of S is
NX(S).

Let H = NG(S), and X = NG(NG(S)). Then H ⊴ X, and thus X =
NX(S)NG(S) = NG(S). □

4.2.2. Exercise. Let G be a finite group. Show that if for each H < G we
have H < NG(H), then G is nilpotent.

4.2.3. Theorem.
(1) A direct product of finitely many nilpotent groups is nilpotent.
(2) A finite p-group is nilpotent.
(3) A finite group G is nilpotent if and only if each p-Sylow subgroup is nor-

mal, so that G is the direct product of its distinct Sylow subgroups.
Proof. Note that if G = A×B, and a1, a2 ∈ A, b1, b2 ∈ B, then [a1b1, a2b2] =

[a1, a2][b1, b2]. It follows that if G = H1 × · · · ×Hn, and k is large enough so that
γk(Hi) = { 1 } for all i, then γk(G) = { 1 }.

By the arguments of Section 1.7, if P 6= { 1 } is a p-group, then Z(P ) 6= { 1 }.
It follows by induction that the upper central series terminates at P .

If G is nilpotent, and S is a Sylow p-subgroup, then we have NG(S) =
NG(NG(S)). It follows that NG(S) = G, that is, S ⊴ G. □

4.3. Nilpotent groups are soluble

We have already seen that a nilpotent group is soluble. Let us look at the
relations between the lower central series and the derived series in a (nilpotent)
group.

Let G be a group. We have γ2(G) = G(1). Then γ3(G) = [γ2(G), G] ≥
[G(1), G(1)] = G(2). Proceeding by induction, if γi(G) ≥ G(i−1), then γi+1(G) =
[γi(G), G] ≥ [G(i−1), G(i−1)] = G(i).

4.3.1. Proposition (Hall-Witt Identity). Let G be a group, a, b, c ∈ G. Then
[a, b−1, c]b[b, c−1, a]c[c, a−1, b]a = 1.

The formula can be thought of as a group-theoretic version of the Jacobi iden-
tity in Lie algebras. It has wonderful geometric interpretations, see the blog post
of the Fields medalist Terence Tao [Tao12], and also [Cal11].
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Proof. Note that each factor comes from the previous one by the cyclic per-
mutation a 7→ b 7→ c 7→ a.

[a, b−1, c]b = b−1[a, b−1]−1c−1[a, b−1]cb =
= b−1[b−1, a]c−1[a, b−1]cb = b−1ba−1b−1ac−1a−1bab−1cb =

= (a−1b−1ac−1a−1)(bab−1cb) = (aca−1ba)−1(bab−1cb).
Set

U = aca−1ba, V = bab−1cb,W = cbc−1ac.

Note that each element is obtained from the previous one by the cyclic permutation
a 7→ b 7→ c 7→ a. Thus

[a, b−1, c]b = U−1V, [b, c−1, a]c = V −1W, [c, a−1, b]a = W−1U,

and the formula follows. □
4.3.2. Theorem (Hall’s three-subgroup Lemma). Let G be a group, A,B,C ≤

G, and N ⊴ G.
If [A,B,C], [B,C,A] ≤ N , then [C,A,B] ≤ N

Proof. Let a ∈ A, b ∈ B, c ∈ C. Then
[c, a−1, b]a = [a, b−1, c]−b[b, c−1, a]−c ∈ N.

□
4.3.3. Corollary. [γi(G), γj(G)] ≤ γi+j(G).

It can be shown that an analogous formula does not hold for the upper central
series.

Proof. Argue by induction on j, the case j = 1 following from the definition.
If j > 1 we have

[γi(G), γj(G)] = [γi(G), [γj−1(G), G]] = [γj−1(G), G, γi(G)]
Now

[γi(G), γj−1(G), G] ≤ [γi+j−1(G), G] = γi+j(G),
[G, γi(G), γj−1(G)] = [γi+1(G), γj−1(G)] ≤ γi+j(G).

Therefore [γi(G), γj(G)] ≤ γi+j(G). □
4.3.4. Corollary. G(i) ≤ γ2i(G).

Proof. We have G(1) = γ2(G). Proceeding by induction on i,
G(i+1) = [G(i), G(i)] ≤ [γ2i(G), γ2i(G)] ≤ γ2i+1(G).

□
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CHAPTER 5

Representations

5.1. Permutation representations

Let G be a group G, Ω a non-empty set, and denote by S(G) the group of per-
mutations (bijective maps) on Ω. The following are well-known to be equivalent:

(1) A (right) action of G on Ω, and
(2) a morphism φ : G → S(Ω).

The second instance will be called a permutation representation of G on Ω.
Given a group G, two important permutation representations, which occur in

Cayley’s Theorem, are
(1) The right regular representation

r : G → S(G)
g 7→ (x 7→ xg),

and
(2) the left regular representation

l : G → S(G)
g 7→ (x 7→ g−1x).

5.2. Linear representations

Let G be a finite group, V a vector space of finite dimension n over the complex
numbers C. We will usually implicitly assume that V = Cn is the space of row
vectors.

A (linear) representation of degree n of G is a morphism
ρ : G → GL(V ) = GL(n,C).

So the group ρ(G) is a group of matrices.
In the rest of these notes, the term representation will always stand for a linear

representation.
As usual we have ρ(g−1) = ρ(g)−1. If n = |G |, we have gn = 1 for g ∈ G,

so that ρ(g)n = I, where I is the identity map on V . This ρ(g) has minimal
polynomial dividing xn − 1. It follows that the eigenvalues of ρ(g) are n-th roots
of unity, and they are distinct, so that ρ(g) is diagonalizable.

5.3. Inner products

See Section 1.6 for the proper definitions.
We now show

47
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5.3.1. Lemma. There is an inner product on V such that the ρ(g) are unitary
matrices.

Proof. In fact, let 〈 ·, · 〉 be the standard inner product on V . Define, for
x, y ∈ V

〈〈x, y〉〉 =
∑
g∈G

〈xρ(g), yρ(g)〉 .

It is easy to show that 〈〈·, ·〉〉 is again an inner product. Moreover for h ∈ G we
immediately have

〈〈xρ(h), yρ(h)〉〉 =
∑
g∈G

〈xρ(h)ρ(g), yρ(h)ρ(g)〉 =
∑
k∈G

〈xρ(k), yρ(k)〉 = 〈〈x, y〉〉,

so that each ρ(h) is unitary with respect to 〈〈·, ·〉〉. In particular, with respect to a
basis which is orthonormal for 〈〈·, ·〉〉, we will have

ρ(g)−1 = ρ(g)∗ = ρ(g)t,
as for x, y ∈ V and g ∈ G we have

〈〈xρ(g)∗, y〉〉 = 〈〈x, yρ(g)〉〉 = 〈〈xρ(g)−1ρ(g), yρ(g)〉〉 = 〈〈xρ(g)−1, y〉〉,
and then since when x, y ∈ V are written with respect to such a basis we have

〈〈x, y〉〉 = x · yt,
then

〈〈x, yρ(g)〉〉 = x · ρ(g)tyt,= xρ(g)t · yt,= 〈〈xρ(g)t, y〉〉.
□

5.4. From permutation representations to linear representations

To every permutation representation of a group G on a finite set Ω one can
associate a linear representation, which we will also refer to as a permutation
representation.

Assuming first for simplicity that Ω = { 1, 2, . . . , n }, let V be a space of di-
mension n, with basis v1, v2, . . . , vn, and suppose G acts on Ω, that is, we have a
permutation representation of G on Ω. Then

ρ : G → GL(V )
g 7→ (vi 7→ vig−1)

is a (linear) representation of G.
In general, given a permutation representation of the finite group G on teh

finite set Ω, let V be a vector space with base vα, for α ∈ Ω, then
ρ : G → GL(V )

g 7→ (vα 7→ vαg−1)
is a (linear) representation of G.

In the particular case when G acts on itself by right multiplication (so that
the permutation representation is r), we will also refer to the associated linear
representation as the (right) regular representation of G.
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5.5. Subrepresentations

If W is a subspace of V of dimension m, it may happen that W is invariant
under ρ(G), that is, for all w ∈ W and g ∈ G, then wρ(g) ∈ W . Then we get a
subrepresentation of G

ρW : G → GL(W ) = GL(m,C).

5.6. Examples

As an example, consider the cyclic group G = 〈 a 〉 ≤ S3 of order three, where
a = (132), so that G acts naturally on Ω = { 1, 2, 3 }. Then

ρ(a) =

0 1 0
0 0 1
1 0 0

 .
Consider w0 = e1 + e2 + e3. (Here the ei are the elements of the standard basis of
C3.) Then

w0ρ(a) = e1ρ(a) + e2ρ(a) + e3ρ(a) = e2 + e3 + e1 = w0,

so that U = 〈w0 〉 is invariant under ρ(G). Let ω = exp(i2π
3 ) be a primitive third

root of unity. Consider the elementsw1 = e1 + ωe2 + ω2e3

w2 = e1 + ω2e2 + ωe3

Then
w1ρ(a) = e2 + ωe3 + ω2e1 = ω2w1

and
w2ρ(a) = e2 + ω2e3 + ωe1 = ωw2.

It follows that W = 〈w1, w2 〉 is also ρ(G)-invariant.

5.6.1. Exercise.
(1) Show that the wi are a basis of V .

(Hint: The matrix 1 1 1
1 ω ω2

1 ω2 ω


is a Vandermonde matrix.)

(2) Show that V = U ⊕W .
(3) Show that in the basis w1, w2 of W , the (sub)representation ρW : G →

GL(W ) is given by

ρW (a) =
[
ω2 0
0 ω

]
.
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5.7. The group algebra

There is another way of describing representations. Let G be a finite group,
and consider the set C[G] = CG of maps from G to C, which is a vector space of
dimension |G | over C. Define on C[G] a convolution product by

a ∗ b(g) =
∑

x,y∈G,xy=g
a(x)b(y).

This can be rewritten of course as
(5.7.1) a ∗ b(g) =

∑
x∈G

a(x)b(x−1g),

but the previous symmetric form is handier for the proofs. Note that this is similar
to the product of polynomials.

With this operation, C[G] turns out to be an algebra, that is, a vector space
over C endowed with an associative, bilinear product. Let us check associativity.

((a ∗ b) ∗ c)(g) =
∑

t,z∈G,tz=g
((a ∗ b)(t))c(z)

=
∑

t,z∈G,tz=g

 ∑
x,y∈G,xy=t

a(x)b(y)

 c(z).
=

∑
x,y,z∈G,xyz=g

a(x)b(y)c(z).

One obtains the very same result with a ∗ (b ∗ c).

5.7.1. Exercise. Try and do this with the asymmetric form (5.7.1).

5.7.2. Exercise. Check the remaining properties.

The vector space C[G] has a basis given by the δg, for g ∈ G, given by

δg(x) =

1 if x = g

0 otherwise,

as for a ∈ C[G] we have uniquely
a =

∑
g∈G

a(g)δg.

Note that
δg ∗ δh(x) =

∑
y,z∈G,yz=x

δg(y)δh(z),

and the only non-zero summand is when y = g, z = h so that x = gh. It follows
that δg ∗ δh = δgh. It is therefore customary to write δg as g, and say that

(5.7.2) C[G] =

∑
g∈G

agg : ag ∈ C


is a vector space with basis the elements of G, and product that extends by
linearity that of G.

The group algebra has the following universal property.
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5.7.3. Proposition. Let (G, ·) be a group, (A,+, ·) a C-algebra.
Let ρ : (G, ·) → (A, ·) be a morphism of monoids. Then there is a unique

morphism of algebras with unity ρ′ : C[G] → A that extends ρ.
Proof. ρ′ is uniquely determined by (5.7.2). □
Therefore if ρ : G → GL(V ) is a representation, this extends uniquely to a

morphism of algebras with unity ρ′ : C[G] → End(V ) given by
ρ′(
∑
g∈G

agg) =
∑
g∈G

agρ(g).

Note that for a ∈ C one has ρ′(a · 1) = a · I, where 1 ∈ G, and I is the identity
map on V . And conversely, given such an algebra morphism ρ′, its restriction to
G is a representation of G.

Now the morphism ρ′ defines the structure of a right C[G]-module on V , as
per Section 1.10. We have obtained

5.7.4. Proposition. Let G be a finite group, and V be a finite dimensional
C-vector space. The following data are equivalent:

(1) a linear representation of G on V , and
(2) a C[G]-module structure on V .

Sometimes we will just speak of a G-module instead of a C[G]-module. And
when speaking of modules, we will simply write vg for ρ(g), for v ∈ V and g ∈ G.

Note that the right regular representation can be regarded as a representation
G → GL(C[G]).

Later we will need
5.7.5. Proposition. The centre Z(C[G]) of C[G] consists of the elements∑

g∈G
f(g)g

where f : G → C is a class function, that is f(gh) = f(g) for all g, h ∈ G.
Proof. Immediate, just conjugate an element in the centre by h ∈ G. □

5.8. Maschke’s Theorem

5.8.1. Theorem (Maschke). Let ρ : G → GL(V ) be a representation of G.
Suppose U is a ρ(G)-invariant subspace of V .
Then there is a ρ(G)-invariant subspace W of V such that

V = U ⊕W.

Since this is a fundamental result, we will give two proofs of it.
First proof of Maschke’s theorem. The key to this is an averaging ar-

gument.
Let us choose an arbitrary subspace X of V such that V = U ⊕X. Of course

X need not be ρ(G)-invariant.
Let π : V → U be the projection of V onto U along X, that is, if we write

v ∈ V as v = u+ x, with u ∈ U and x ∈ X, then π(v) = u.
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Consider the following linear map on V

ψ = 1
|G |

∑
g∈G

ρ(g)−1πρ(g).

Thus for v ∈ V

vψ = 1
|G |

∑
g∈G

((vρ(g)−1)π)ρ(g).

Note first that V ψ ⊆ U , as π maps V onto U , and U is ρ(G)-invariant. But in
fact V ψ = U : if u ∈ U , then

uψ = 1
|G |

∑
g∈G

((uρ(g)−1)π)ρ(g) = 1
|G |

∑
g∈G

(uρ(g)−1)ρ(g) = 1
|G |

∑
g∈G

u = u,

as uρ(g)−1 ∈ U for all g ∈ G. Now ψ2 = ψ, since vψ2 = (vψ)ψ = vψ, as vψ ∈ U ,
and we have just shown that ψ restricts to the identity on U . By Lemma 1.1.1,

V = U ⊕ ker(ψ).
Now note that for v ∈ V and h ∈ G one has

(5.8.1)

vρ(h)ψ = vρ(h) 1
|G |

∑
g∈G

ρ(g−1)πρ(g)

= v
1

|G |
∑
g∈G

ρ(hg−1)πρ(g)

= v
1

|G |
∑
g∈G

ρ(gh−1)−1πρ(g)

= v
1

|G |
∑
k∈G

ρ(k)−1πρ(kh)

= vψρ(h)

This implies that ker(ψ) is ρ(G)-invariant, as for v ∈ ker(ψ) and g ∈ G we have
(vρ(g))ψ = (vψ)ρ(g) = 0.

□
Second proof of Maschke’s theorem. We employ the inner product of

Lemma 5.3.1. Let W be the orthogonal of U with respect to 〈〈·, ·〉〉, that is,

W = U⊥ = { v ∈ V : 〈〈u, x〉〉 = 0 for all u ∈ U } .
We claim that W is ρ(G)-invariant. In fact if w ∈ W , then for all g ∈ G and
u ∈ U we have

〈〈u,wρ(g)〉〉 = 〈〈uρ(g)−1, w〉〉 = 0,
as U is ρ(G)-invariant. □

5.8.2. Remark. If one looks at the proof that V = U ⊕ U⊥ of Section 1.6,
where one employs a projection p onto U along U⊥, one can see the similarity
between the two proofs of Maschke’s Theorem.
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5.8.3. Definition. If ρi : G → GL(Vi) are representations of the group G, for
i = 1, . . . , n, then the direct sum representation is defined as
ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρn : G → GL(V1) × GL(V2) × · · · × GL(Vn) ≤ GL(V1 ⊕ V2 ⊕ · · · ⊕ Vn)

g 7→ (v1 ⊕ v2 ⊕ · · · ⊕ vn 7→ v1ρ1(g) ⊕ v2ρ2(g) ⊕ · · · ⊕ vnρn(g))

5.9. Irreducible representations

5.9.1. Definition. A representation ρ : G → GL(V ) is said to be irreducible
if the only ρ(G)-invariant subspaces of V are { 0 } and V itself.

Maschke’s Theorem implies immediately (by induction on the dimension of the
vector space)

5.9.2. Theorem. Every finite-dimensional representation over C is a direct
sum of irreducible ones.

One should compare this result to the fact that two groups may have the same
composition factors, without being isomorphic. For instance, as noted earlier,
both C6 and S3 have two composition factors that are cyclic groups of order 2
and 3. So this simple constituents alone do not determine a group uniquely, as
they can be put together in different ways. (In this particular case, there are two
non-isomorphic semidirect products of C3 by C2.)

With a representation, instead, if you know its irreducible subrepresentations,
the representation is uniquely determined as the direct sum of them, there is only
one (trivial) way of gluing them together.

5.9.3. Exercise. The statement is not true anymore over fields F whose char-
acteristic divides the order of G. The simplest example is given by G = 〈 a 〉 cyclic
of order 2, and by the representation over the field F with two elements defined by

ρ : G → F 2

a 7→
[
1 1
0 1

]
.

5.10. Morphisms and modules over the group algebra

5.10.1. Definition. Let ρi : G → GL(Vi) be representations of G, for i = 1, 2.
A morphism of representations is a linear map f : V1 → V2 such that for g ∈ G

ρ1(g)f = fρ2(g).

This is a property we had already noted for the projection ψ in (5.8.1) in the
course of the proof of Maschke’s Theorem. The definition becomes clearer once
one keeps in mind the equivalence of group representations and group algebra
modules described in Section 5.7.

This yields
• ρ(G)-invariant subspaces are nothing else but C[G]-submodules, and
• morphisms of representations are nothing else but morphisms of C[G]-

modules.
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If a morphism f of representations (modules) is bijective, we call it of course
an isomorphism. So ρ1, ρ2 are isomorphic if there is f such that

ρ2(g) = f−1ρ1(g)f, for all g ∈ G.

5.11. Schur’s Lemma

5.11.1. Theorem (Schur’s Lemma). Let ρi : G → GL(Vi) be irreducible repre-
sentations of G, for i = 1, 2, and f : V1 → V2 a morphism.

Then
• either f = 0,
• or f is an isomorphism (that is, f is bijective).

Proof. One sees easily that ker(f) ⊆ V1 is ρ1(G)-invariant, and V1f ⊆ V2 is
ρ2(G)-invariant.

If V1f = { 0 }, then f = 0. If V1f 6= { 0 }, then V1f = V2, as ρ2 is irreducible,
and ker(f) 6= V1, so that ker(f) = { 0 }, as ρ1 is irreducible. □

5.11.2. Corollary. Let ρ : G → GL(V ) be irreducible. If f : V → V is
an isomorphism, then there is λ ∈ C∗ such that vf = λv is multiplication by the
scalar λ.

Proof. Let λ be an eigenvalue of f . (We are exploiting for the first time the
fact that C is algebraically closed.)

Then from
ρ1(g)f = fρ2(g), and ρ1(g)(λI) = (λI)ρ2(g),

where I is the identity on V , we get
ρ1(g)(f − λI) = (f − λI)ρ2(g).

Thus f −λI is also a morphism of representations. Since it is singular, it must be
zero, so that f = λI is scalar multiplication by λ. □

5.11.3. Lemma. Let ρi : G → GL(Vi) be representations of G, for i = 1, 2. Let
f : V1 → V2 be any linear map. Then

f ′ =
∑
g∈G

ρ1(g−1)fρ2(g)

is a morphism of representations V1 → V2.

Proof. Very much as in Maschke’s Theorem. □

5.12. Orthogonality Relations

5.12.1. Proposition. Let ρi : G → GL(Vi), for i = 1, 2, be non-isomorphic,
irreducible representations. Take V1, V2 to be spaces of row vectors, with standard
bases u1, . . . , un and v1, . . . , vm. Let ρjki (g) denote the (j, k)-component of ρi(g).

Then for all j, s, t, l we have
(5.12.1)

∑
g∈G

ρjs1 (g−1)ρtl2 (g) = 0
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5.12.2. Remark. By choosing the bases to be orthonormal as in Lemma 5.3.1,
then (5.12.1) can be rewritten as∑

g∈G
ρsj1 (g)ρtl2 (g) = 0

because
ρ1(g−1) = ρ1(g)−1 = ρ1(g)∗ = ρ1(g)t.

Proof. Let Est : V1 → V2 be the linear map that sends all ui to 0, except
usEs,t = vt.

Then for each j we have

ujρ1(g−1)Es,tρ2(g) =
n∑
k=1

ρjk1 (g−1)ukEs,tρ2(g)

= ρjs1 (g−1)vtρ2(g)

=
m∑
l=1

vlρ
js
1 (g−1)ρtl2 (g).

Since ∑
g∈G

ρ1(g−1)Es,tρ2(g)

is a morphism of representations, Schur’s Lemma yields that

0 =
m∑
l=1

vl
∑
g∈G

ρjs1 (g−1)ρtl2 (g),

so that ∑
g∈G

ρjs1 (g−1)ρtl2 (g) = 0

for all j, s, t, l. □
5.12.3. Proposition. Let ρ be an irreducible representation. Take V to be

spaces of row vectors, with standard basis u1, . . . , un. Let ρjk(g) denote the (j, k)-
component of ρ(g).

Then for all j, s, t, l we have

∑
g∈G

ρsj(g)ρtl(g) =


|G |
n

if j = l and s = t

0 otherwise.

Proof. In the notation of the previous proof, take first s 6= t. Then
trace(ρ(g−1)Es,tρ(g)) = trace(Es,t) = 0,

so that ∑
g∈G

ρjs(g−1)ρtl(g) = 0

as in the previous proof. This is because Schur’s Lemma yields that∑
g∈G

ρ(g−1)Es,tρ(g)
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is a scalar.
When s = t, we have

trace(ρ(g−1)Es,sρ(g)) = trace(Es,s) = 1,
so that

trace(
∑
g∈G

ρ(g−1)Es,sρ(g)) = |G | ,

and thus ∑g∈G ρ(g−1)Es,sρ(g) has to be an isomorphism V → V . By Corol-
lary 5.11.2, we have that ∑

g∈G
ρ(g−1)Es,sρ(g)

is scalar multiplication by |G |
n

. The result follows as in the previous proof. □
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Characters

6.1. Characters

6.1.1. Definition. The character of a representation ρ is the map
χ : G → C

g 7→ trace(ρ(g)).
One says that ρ affords χ.

We have seen in Subsection 5.9 that two representations ρ1, ρ2 are isomorphic
if and only if there is a bijective linear map such that

ρ2(g) = f−1ρ1(g)f, for all g ∈ G.
Therefore

trace(ρ2(g)) = trace(f−1ρ1(g)f) = trace(ρ1(g)).
In other words

6.1.2. Proposition. The character of a representation only depends on the
isomorphism type of the representation.

Moreover we have

6.1.3. Proposition. Characters are class functions.

Here a function f : G → C is said to be a class function if f(x) depends only
on the conjugacy class of x ∈ G, that is, f(g−1xg) = f(x) for all g ∈ G.

Proof. If ρ affords χ, we have
χ(g−1xg) = trace(ρ(g−1xg))

= trace(ρ(g)−1ρ(x)ρ(g))
= trace(ρ(x))
= χ(x).

□
6.1.4. Remark. If a, b : G → C are two functions, then setting

(a, b) = 1
|G |

∑
g∈G

a(g)b(g)

we obtain an inner product in the space of all such functions.

6.1.5. Theorem (Orthogonality relations).
57
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(1) If χ, ψ are the characters of two non-isomorphic, irreducible representa-
tions, then

(χ, ψ) = 0.
(2) If χ is the character of an irreducible representation, then

(χ, χ) = 1.
(3) Summing it up, the characters of the irreducible representations are or-

thonormal.

Proof. The first statement is clear from Proposition 5.12.1. The second one
follows from Proposition 5.12.1, as

(χ, χ) = 1
|G |

∑
g∈G

(
n∑
i=1

ρii(g)
) n∑

j=1
ρjj(g)


= 1

|G |

n∑
i=1

∑
g∈G

ρii(g)ρii(g)

= 1
|G |

· n · |G |
n

= 1.

□
We obtain an important fact

6.1.6. Theorem. The character of a representation determines the represen-
tation up to isomorphism.

In case you are interested in how to get back from a character to the (unique)
representation it affords it, check [Spe10].

Proof. Let ρ be a representation, and decompose it as
ρ = n1ρ1 ⊕ n2ρ2 ⊕ · · · ⊕ ntρt,

where the ρi are pairwise non-isomorphic irreducible representations, and ni de-
notes the number of times ρi occurs.

Taking the trace, we get
χ = n1χ1 ⊕ n2χ2 ⊕ · · · ⊕ ntχt,

where χ is the character of ρ, and χi is the character of ρi.
Now

(χi, χ) = ni.

Thus the character χ determines the ni.
It follows in particular that the ni are only determined by the isomorphism

type of ρ. □
This allows for the following

6.1.7. Definition. A character is said to be irreducible if the corresponding
representation is irreducible.

The set of the irreducible characters of G is denoted by Irr(G).
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6.2. Decomposing the regular representation

Let ρ : G → GL(C[G]) be the right regular representation, and ψ its character.
Since xρ(g) = xg = x only if g = 1, we get

ψ(g) =

|G | if g = 1
0 otherwise.

Let χ be an irreducible character. Then

(ψ, χ) = 1
|G |

∑
g∈G

ψ(g)χ(g) = 1
|G |

ψ(1)χ(1) = 1
|G |

|G |χ(1) = χ(1).

6.2.1. Definition. The degree of a character χ is χ(1) = trace(I), which
equals the dimension of the vector space associated to representation that affords
χ.

It follows

6.2.2. Theorem.
(1) Every irreducible representation with character χ occurs χ(1) times in

the decomposition of the regular representation as a sum of irreducible
representation.

(2) If ψ is the character of the regular representation, then
ψ =

∑
χ

χ(1)χ,

where χ ranges over the irreducible characters of G.
(3)

(6.2.1) |G | =
∑
χ

χ(1)2,

where χ ranges over the irreducible characters of G.

Proof. It remains only to prove the important last statement, which follows
by evaluating (2) at 1. □

6.2.3. Corollary. Let ρi be the pairwise non-isomorphic, irreducible repre-
sentations, and ρjki be their components. Then the ρjki are an orthogonal basis for
the space of functions G → C.

Proof. We have see in Subsection 5.12 that these functions are orthogonal.
Now (6.2.1) shows that their number equals the dimension of the space of functions
G → C. □

6.3. Number of irreducible characters

Here I am following [Ser16].
If ρi : G → GL(Vi) are the pairwise non-isomorphic irreducible representations

of G, then we have an algebra morphism
r : C[G] →

∑
i

End(Vi).
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The two spaces have the same dimension, by (6.2.1). We will show that r is injec-
tive, and this will imply that r is an algebra isomorphism. But an element of ker(r)
acts as 0 in every irreducible representation, thus in the regular representation,
which is faithful (action on 1 ∈ C[G]).

Now the centre of the algebra ∑i End(Vi) has dimension the number of distinct
irreducible characters. The centre of C[G] has a basis given by the sums over the
conjugacy classes, and thus the dimension of the centre equals the number of
conjugacy classes. We obtain

6.3.1. Theorem. The number of distinct irreducible characters (that is, of
pairwise non-isomorphic representations) of G equals the number of conjugacy
classes of G.

The isomorphism r induces an isomorphism from Z(C[G]) to the centre of∑
i End(Vi), which is a sum of copies of C (scalar matrices for each End(Vi)).

Choose one of the Vi, associated to the irreducible representation ρ with character
χ. Consider the map rχ, which is the composition of r with the projection on
End(Vi), and which is simply given by
(6.3.1) rχ(

∑
g∈G

f(g)g) =
∑
g∈G

f(g)ρ(g)

Let now α = ∑
g∈G f(g)g ∈ Z(C[G]); this goes under rχ to a scalar matrix S in

Z(End(Vi)), which is multiplication by some a. Since a = trace(S)/χ(1), (6.3.1)
yields that the value of a is

1
χ(1)

· trace(
∑
g∈G

f(g)ρ(g)) = 1
χ(1)

∑
g∈G

f(g)χ(g) = |G |
χ(1)

(f, χ).

6.3.2. Theorem. Let ∑g∈G f(g)g ∈ Z(C[G]).
Then rχ(∑g∈G f(g)g) is the scalar matrix that is multiplication by

|G |
χ(1)

(f, χ).

6.4. Representation and characters from quotients

If N is a normal subgroup of the finite group G, and ρ is a representation of
G/N , then ρ(g) = ρ(gN), for g ∈ G, defines a representation of G, whose character
is χ′(g) = χ(gN), if χ is the character of ρ.

6.5. Products of representations and characters

If ρi : G → GL(Vi) are two representations of G, for i = 1, 2, then (1.15.4)
shows that

ρ1 ⊗ ρ2 : G → GL(V1 ⊗C V2)
g 7→ ρ1(g) ⊗ ρ2(g)

is a representation. If χi is the character of ρi, then (1.15.3) shows that the
character χ of ρ1 ⊗ ρ2 is the product of χ1 and χ2,

χ(g) = χ1(g)χ2(g).
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There is a special case of this that does not require the technicalities of the
tensor product. Recall that a character λ is linear if λ(1) = 1, so that λ : G →
GL(1,C) coincides with the representation that affords it.

Now, if ρ : G → GL(V ) is a representation with character χ, and λ is a linear
character, then

λ · ρ : G → GL(V )
g 7→ λ(g)ρ(g)

is visibly also a representation, whose character is g 7→ λ(g)χ(g).

6.6. Products of characters, alternative version

This is extracted from this answer of mine to a MSE question:
https://math.stackexchange.com/a/4533273/58401

6.6.1. Proposition. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two linear
representations with characters χ1 and χ2. Assume WLOG ρ1 unitary.

Let W = hom(V1, V2), the vector space of linear mappings. For s ∈ G and
f ∈ W define ρ(s) by

fρ(s) = ρ1(s)−1 ◦ f ◦ ρ2(s);
so fρ(s) ∈ W .

The ρ is a linear representation ρ : G → GL(W ). and its character is χ1 · χ2.
It follows that the (pointwise) product of two characters is again a character.

Proof. Let ei be a basis of V1, and fj be a basis of V2.
For a fixed s ∈ G, write

ekρ1(s)−1 =
∑
i

akiei, fhρ2(s) =
∑
j

bhifj.

Assuming WLOG that ρ1 is unitary with respect to the base of the ei, we will
have ρ1(s)−1 = ρ1(s)

t, so

trace(ρ1(s)−1) =
∑
i

aii = χ(s).

Now W has a basis given by the elements Eu,v, which map eu to fv, and all
others ei to zero.

We will have
ρ1(s)−1 ◦ Eu,v ◦ ρ2(s) =

∑
m,n

cuv,mnEmn

for some cuv,mn. To compute the trace, we need to compute the diagonal coefficient
cuv,uv. Now for all u we have

euρ1(s)−1 ◦ Eu,v ◦ ρ2(s) = eu
∑
m,n

cuv,mnEmn =
∑
n

cuv,unfn,

so that cuv,uv will be the coefficient of fv in euρ1(s)−1 ◦ Eu,v ◦ ρ2(s).

https://math.stackexchange.com/a/4533273/58401
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We compute this as
euρ1(s)−1 ◦ Eu,v ◦ ρ2(s) =

∑
i

auieiEu,vρ2(s)

= auufvρ2(s)
= auu

∑
j

bvjfj.

Thus cuv,uv is
auubvv.

Now sum over u, v to get the result. □

6.7. Kernels and centres

If χ is a character of the finite group G, define its kernel as
ker(χ) = { g ∈ G : χ(g) = χ(1) } .

6.7.1. Lemma. Let ρ : G → GL(V ) be a representation with character χ.
Then

ker(ρ) = ker(χ).

Proof. If g ∈ ker(ρ), then χ(g) = χ(1).
Conversely, if χ(g) = χ(1), then Lemma 1.13.4 shows that g ∈ ker(ρ). □
6.7.2. Lemma. Let χ be a character of G, and χ = ∑

niχi, with χ ∈ Irr(G).
Then
(6.7.1) ker(χ) = ∩ { ker(χi) : ni > 0 } .
Taking χ to be the regular character, we see that the intersection of the kernels of
all irreducible characters is { 1 }.

Proof. The ⊇ inclusion in (6.7.1) is clear.
For the reverse inclusion ⊆, write ρ, ρi for the representations affording χ, χi.

If g ∈ ker(χ) = ker(ρ), then ρ(g) is the identity matrix. This is independent of the
choice of a basis, so this means each ρi(g) are identity matrices, so g ∈ ker(ρi) =
ker(χi) for all i. □

The centre of a character χ is
Z(χ) = { g ∈ G : |χ(g) | = χ(1) } ≥ ker(χ).

6.7.3. Lemma. Let χ be a character of the representation ρ of the group G.
Then

(1) Z(χ) = { g ∈ G : ρ(g) is scalar };
(2) Z(χ) ≤ G;
(3) χZ(χ) = χ(1)λ for a linear character λ of Z(χ);
(4) Z(χ)/ ker(χ) is cyclic;
(5) Z(χ)/ ker(χ) ≤ Z(G/ ker(χ)).

If χ ∈ Irr(G) we have also
(6) Z(χ)/ ker(χ) = Z(G/ ker(χ)).
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Proof. By Lemma 1.13.4, |χ(g) | = χ(1) if and only if ρ(g) is scalar.
Let λ : Z(χ) → C be defined by ρ(g) = λ(g)I, according to the previous point.

We have λ(gh)I = ρ(gh) = ρ(g)ρ(h) = λ(g)λ(h)I, so that Z(χ) is a subgroup,
and λ is a linear character.

Since ker(χ) = ker(λ), we have that Z(χ)/ ker(χ) is isomorphic to a finite
subgroup of C∗, and thus is cyclic. Also, ker(χ) = ker(ρ), and ρ(Z(χ)) is in the
centre of ρ(G) ∼= G/ ker(χ), as it is made of scalar matrices.

Finally, if χ ∈ Irr(G), then (to be completed, but straightforward). □

6.8. Character tables

6.8.1. Definition. The character table of G is a square matrix, which the
rows labelled by the distinct irreducible characters, and the columns labelled by
the conjugacy classes.

The χ, aG entry is χ(a).

6.9. Characters of abelian groups

6.9.1. Theorem. Let G be a finite abelian group.
Then each irreducible character χ of G is linear, that is, it has χ(1) = 1.
It follows that χ coincides with the representations which affords it, so that

χ : G → C∗ is a morphism of groups.

This follows from Section 1.5: a finite number of commuting, diagonalizable
matrices can be diagonalized simultaneously, that is, there is a basis with respect
to which they are all diagonal.

Alternatively, an abelian group of order n has n conjugacy classes, and thus n
irreducible characters. Since n =

∑
χ∈Irr(G)

χ(1)2 ≥ n, each χ(1) must be 1.

Let G = 〈 g 〉 be cyclic of order n. Let ω be a primitive n-th root of unity.
Then the irreducible characters of G are

χk : G → C∗

g 7→ ωk

for 0 ≤ k < n, so that χk(gj) = ωjk.
The character table of a cyclic group is a Vandermonde matrix, for instance

when n = 3, it is
1 g g2

χ0 1 1 1
χ1 1 ω ω2

χ2 1 ω2 ω

Note that χh ·χk(g) = ωh+k = χh+k(g), so the characters form a group isomor-
phic to G.

This holds more generally for the dual group of characters of a finite abelian
group G. In fact, if

G ∼= Z/n1Z × · · · × Z/ntZ,
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with, say n1 ≥ n2 ≥ · · · ≥ nt > 0, then the irreducible characters are

χk1,...,kt : G → C∗

(x1, . . . , xt) 7→ ωk1x1
1 · · · · · ωktxt

t

where ωj is a primitive nj-th root of unity. We have

χh1,...,ht · χk1,...,kt = χh1+k1,...,ht+kt .

Recall from Section 6.4 that if N ⊴ G, then any representation ρ : G/N →
GL(V ) of the quotient group G/N lifts to a representation ρ′ : G → G/N →
GL(V ) of G, and so does the corresponding character.

In particular, the linear characters of a group G are |G/G′ |, the liftings of the
irreducible characters of the abelian group G/G′.

6.10. Induced Characters

6.10.1. Introduction. Let G be a group, H ≤ G, and ρ : G → GL(V ) be a
representation of G. Clearly ρH : H → GL(V ) is a representation of H.

However, if σ : H → GL(V ) is a representation of H, it is not always the
case that σ = ρH , for a representation ρ of G. For instance, let g = (123) ∈ S3.
The cyclic group H = 〈 g 〉 of order 3 has a linear representation σ such that
σ() = ω is a primitive third root of unity. However, G = S3 ≥ H has no (linear)
representation ρ which takes the value ω on G.

The method of induced representations remedy in some sense the situation.
Given a representation σ of H on the vector space W , the method yields a repre-
sentation σG of G on a larger vector space V which is natural in some sense, and
with the property that if σ is the restriction to H of an irreducible representation
ρ of G, then ρ is a constitutent of σG.

6.10.2. Serre’s heuristic approach. Let us start with the heuristic ap-
proach of [Ser78, 3.3].

Let G be a finite group, and V a C[G]-module. (The language of modules
turns handy here, but it can be translated any time in terms of representations.)

Let H ≤ G, and let W be a C[H]-submodule of V . Let T be a complete set
of representatives for the right cosets of H in G, that is, every such coset can be
written as Ht, for a unique t ∈ T . Then note that then set Wt = W (Ht) only
depends on the coset Ht, and not on the choice of a particular representative.
Moreover each Wt is a subspace of V , and it is a C[H t] module, as wt(t−1ht) =
(wh)t ∈ Wt for w ∈ W and h ∈ H.

Consider the sum S = ∑
t∈T Wt (this is just the set of all sums from the

summands). This is a C[G]-submodule of V , as for g ∈ G we will have tg = ht′

for some h ∈ H and t′ ∈ T , so that (Wt)g = (Wh)t′ = Wt′ ⊆ S.
We will say that the C[G]-module (and the corresponding representation) is

induced from the C[H]-module W if there is a direct sum decomposition

V =
⊕
t∈T

Wt.
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6.10.1. Theorem. Let G be a finite group, and H ≤ G.
Let W be a C[H]-module.
Then there exists a C[G]-module induced by W , and this is unique up to iso-

morphism.

Proof. One can see that it is possible to reduce to the case when W is irre-
ducible.

Then W is a submodule of the regular module W = C[H] for the group algebra
C[H].

We claim that V = C[G] is the C[G]-module induced by W . In fact an
arbitrary element of C[G] can be written as

∑
g∈G

f(g)g =
∑
t∈T

∑
h∈H

f(ht)h

 t ∈
∑
t∈T

Wt,

where f : G → C, and this representation is clearly unique.
It remains to show that if the C[G]-module is induced by the C[H]-module

W , and W ′ is a C[H]-submodule of W , then
V ′ =

∑
t∈T

W ′t

is a C[G]-submodule of V , which is induced by W ′, but this is pretty straightfor-
ward.

We skip uniqueness for the moment. □
If (Wt)g 6= Wt for all t ∈ T , then ψ(g) = 0, as the blocks Wt are permuted

without fixed points. Now Wtg = Wt

6.10.3. Same problem in terms of characters. Taken from [Isa06]. There
is some duplication here.

If ρ is a representation of G, and H ≤ G, then the restriction ρH of ρ to H is
clearly a representation of H.

If we have a representation of H ≤ G, can we make it into a representation of
G? This is possibly best understood in terms of characters. If χ is a character on
H, then this is a class function on H, but it need not be a class function on G.

6.10.2. Exercise. Let G = A4, H = { 1, (12)(34), (13)(24), (14)(23) }. Show
that ρ : H → GL(1,C) = C∗ defined by

ρ((12)(34)) = 1, ρ((13)(24)) = −1
is a representation/character for H. Show that this is not (the restriction of) a
class function on G, as (12)(34)) and ((13)(24) are conjugate in G.

We can fix this as follows. First extend χ to χ◦, which is zero outside H. Then
define

χG(x) = 1
|H |

∑
g∈G

χ◦(xg).

This is clearly a class function, and χG(1) = |G |
|H |

χ(1).



66 6. CHARACTERS

To show that χG is character of G, we appeal to
6.10.3. Proposition (Frobenius Reciprocity). Let H ≤ G. Let φ be a class

function on H, and ϑ a class function on G.
Then

(ϑ, φG)G = (ϑH , φ)H ,
where the two scalar products are in G and H respectively.

Proof.

(ϑ, φG)G = 1
|G |

∑
x∈G

ϑ(x)φG(x)

= 1
|G |

1
|H |

∑
x,g∈G

ϑ(x)φ◦(xg)

= 1
|G |

1
|H |

∑
y,g∈G

ϑ(yg−1)φ◦(y)

= 1
|H |

∑
y∈G

ϑ(y)φ◦(y)

= 1
|H |

∑
y∈H

ϑ(y)φ(y)

= (ϑH , φ)H .
□

6.10.4. Corollary. If φ is a character of H ≤ G, then φG is a character of
G.

Proof. We have seen that φG(1) = |G |
|H |

φ(1), so φG 6= 0. As a class function

on G, φG is a C-linear combination of irreducible characters of G. Now if χ ∈
Irr(G), we have (φG, χ)G = (φ, χH), and since χH is a character of H, the latter
is a non-negative integer. It follows φG is a character of G. □

6.10.5. Corollary. Let H ≤ G, and φ ∈ Irr(H). Then φ is a constituent of
χH , for some χ ∈ Irr(G).

6.10.6. Definition. An irreducible character φ is a constituent of a character
ψ is (φ, ψ) 6= 0.

Proof. Let χ be an irreducible constituent of φG. Then
0 6= (φG, χ) = (φ, χH),

so that φ is a constituent of χH . □
6.10.7. Corollary. Let G be an abelian group, and H ≤ G.
Then every irreducible character of H is the restriction to H of an irreducible

character of G.
Proof. By the previous result, if φ ∈ Irr(H), then φ is a constituent of χH ,

for some χ ∈ Irr(G). Since both characters have degree 1, they must be equal. □
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6.10.4. Tensor products. We now mention how induced characters arise
from tensor products. Let G be a finite group, and H ≤ G. Let V = VC[H] be
a finite-dimensional C[H] module. Since C[G] = C[H]C[G]C[G] is a (C[H],C[G])-
bimodule,

W = VC[H] ⊗C[H] C[H]C[G]C[G]

becomes a right C[G]-module.
Let T be a complete set of representative of the right cosets of H in G. The

idea is, let G/H = {Hg : g ∈ G } be the set of right cosets of H in G. The map

G → G/H

g 7→ Hg

is surjective, hence it has a one-sided inverse (actually, may), that is, there are
maps τ : G/H → G such that Hg = Hτ(Hg) for all g ∈ G. Every such map thus
selects a representative for each coset. The image T of any such map τ is called a
complete set of representative of the right cosets of H in G. A coset can be written
uniquely as Ht, for t ∈ T , and an element of G can be written uniquely as ht, for
h ∈ H, t ∈ T .

Note that if g = ht, for h ∈ H, t ∈ T , then Hg = g−1Hg = t−1h−1Hht =
t−1Ht = H t, so all conjugates of H are of the latter form.

We then have that as a vector space W decomposes as

(V ⊗ t1) ⊕ · · · ⊕ (V ⊗ tn),

as

v ⊗ (
∑
g∈G

agg) =
∑
g∈G

agv ⊗ g =
∑
h∈H

∑
t∈T

ahtv ⊗ ht =
∑
t∈T

(
∑
h∈H

ahtvh) ⊗ t.

If v1, . . . , vn is a basis of V , one can see that the vi ⊗ t are a basis for W , for
i = 1, . . . , n and t ∈ T .

6.10.8. Remark. This is related to a map called transfer, see [Rob96, Ch. 10] or
[Ser16, Ch. 7] or [Hup67] under Verlagerun.

What is the character ψ of the G-representation W , in terms of the character
χ of the H-representation V ? If t ∈ T , and g ∈ G, we will have

tg = ht′

for some unique h ∈ H and t′ ∈ T . Therefore for i = 1, . . . , n we will have

(vi ⊗ t)g = vi ⊗ (tg) = vi ⊗ (ht′) = (vih) ⊗ t′.

A non-zero diagonal coefficient can thus occur only if t′ = t, that is tg = ht, or
g = t−1ht ∈ H t. And then, such a contribution would be aii, if

vih =
n∑
i=1

aijvj.

Since ∑n
i=1 aii is the value on h of the character of the representation determined

by the C[H]-module V , we obtain the above formula for the induced character.
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6.11. Characters of permutation representations

We have seen that if the finite group G acts on the finite set Ω = { 1, . . . , n },
this induces a linear representation of G on a vector space of basis v1, . . . , vn.
What is its characters χ? There is a contribution “1” to χ(g) from every i such
that ig−1 = i, that is,

6.11.1. Lemma. χ(g) = F (g).

Here F (g) is the number of fixed points of g acting on Ω.

6.11.2. Lemma. The number of orbits of a permutation representation is
1

|G |
∑
g∈G

F (g).

Proof. Consider the set Ω ×G, and its subset
∆ = { (α, g) : αg = α } .

In a typical double counting argument, we can count by rows, that is
(6.11.1) | ∆ | =

∑
α∈Ω

| { g ∈ G : αg = α } | =
∑
α∈Ω

|Gα | ,

and we can count by column
(6.11.2) | ∆ | =

∑
g∈G

| {α ∈ Ω : αg = α } | =
∑
g∈G

F (g).

Now stabilisers are constant on orbits. This, plus orbit-stabliser, yields that for
each orbit αG we have∑

β∈αG

|Gβ | =
∑
β∈αG

|Gα | =
∣∣∣αG ∣∣∣ · |Gα | = |G | .

Therefore (6.11.1) yields that | ∆ | is |G | times the number of orbits. Comparing
to (6.11.2), we get the formula. □

From the two lemmas we get

6.11.3. Proposition. Let χ be the character of a permutation representation.
(1) (1, χ) is the number of orbits of G.
(2) G acts transitively if and only if (1, χ) = 1

If G acts transitively, then we have χ = 1 + ψ, for a character ψ not having 1
as a constituent.

If G acts on the set Ω, then it acts on Ω2 = Ω × Ω by (α, β)g = (αg, βg).
Since (α, β)g = (α, β) if and only if αg = α and βg = β, we will have that the
permutation character for the action on Ω2 will be χ2.

6.11.4. Proposition. Let G act transitively on Ω, with | Ω | > 1, let χ be the
corresponding permutation character, and χ = 1 + ψ.

The following are equivalent
(1) G acts 2-transitively on Ω,
(2) G has two orbits on Ω2, and
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(3) ψ ∈ Irr(G).

Proof of Proposition 6.11.4 . Since | Ω | > 1, G has at least two orbits
on Ω2, namely

{ (α, α) : α ∈ Ω } and { (α, β) : α, β ∈ Ω, α 6= β } ,
The first set is an orbit, as G is transitive, and the second one will be an orbit
precisely when G is 2-transitive.

Since the character of the action on Ω2 is χ2, G acts 2-transitively on Ω if and
only if

2 = (1, χ2) = (χ, χ) = 1 + (ψ, ψ),
where we have used the facts that (1, ψ) = 0, and that χ has integer, and thus
real, values. □

6.12. Character tables of small groups

6.12.1. S3.
# 1 2 3

1 (123) (12)
1 1 1
1 1 −1

χ 2 −1 0
The first two characters are the linear ones from S3/A3 ∼= C2.
The non-linear character χ can be deduced from the orthogonality relations,

or from the standard permutation character.
It is also easy to compute the representation ρ corresponding to χ. The eigen-

values of ρ((123)) are of the form ωj, where ω is a primitve 3-rd root of unity. Since
(123) is conjugate to its inverse, if ωj is an eigenvalue, so is ω−j. If the eigenvalues
are both 1, then we should have χ((123)) = 2, which is not the case. Then the
eigenvalues are ω, ω−1 (and in fact ω + ω−1 = −1. Now since (123)(12) = (123)−1,
if vρ((123)) = ωv, we have (omitting the ρ, that is, thinking in terms of modules)

v(123)(12) = (v(12))ω = (v(12))(123)−1),
so that (v(12))(123) = (v(12))ω−1. It follows that (12) exchanges the eigenspaces
of (123) relative to the two eigenvalues, so that

ρ((123)) =
[
ω

ω−1

]
, ρ((12)) =

[
λ

λ−1

]
,

for some λ 6= 0, the λ−1 coming from the fact that ρ((12))2 = 1.

6.12.2. A4.
# 1 3 4 4

1 (12)(34) (123) (132)
1 1 1 1
1 1 ω ω−1

1 1 ω−1 ω
χ 3 −1 0 0
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The first three characters are the linear ones from A4/V ∼= C3, where V =
{ 1, (12)(34), (13)(24), (14)(23) }.

The non-linear character χ can be deduced from the orthogonality relations,
or from the standard permutation character. To compute the associated represen-
tation ρ, note that we must have

ρ((12)(34)) =

1
−1

−1

 , ρ((14)(23)) =

−1
−1

1

 , ρ((13)(24)) =

−1
1

−1

 ,
with respect to a suitable basis. Since ρ((123)) must permute the three cyclically,
one can take

ρ((123)) =

 1
1

1

 .

6.12.3. S4.

# 1 3 6 8 6
1 (12)(34) (12) (123) (1234)
1 1 1 1 1
1 1 −1 1 −1
2 2 0 −1 0
3 −1 1 0 −1
3 −1 −1 0 1

The first two characters are the linear ones from S4/A4 ∼= C2.
The first three characters come from those of S3 ∼= S4/V .
The fourth character come from the standard permutation character.
The last one is the previous one times the sign character, that is, the second

one.

6.12.4. S5. (Here we mainly follow [Bla19].)
First, linear characters and standard permutation representation.

# 1 15 10 20 20 30 24
1 (12)(34) (12) (123) (123)(45) (1234) (12345)
1 1 1 1 1 1 1
1 1 −1 1 −1 −1 1
4 0 2 1 −1 0 −1
4 0 −2 1 1 0 −1
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Now some congruences show that the next characters must have
# 1 15 10 20 20 30 24

1 (12)(34) (12) (123) (123)(45) (1234) (12345)
1 1 1 1 1 1 1

sign 1 1 −1 1 −1 −1 1
4 0 2 1 −1 0 −1
4 0 −2 1 1 0 −1
5
5
6 0 0 0

with the second 5 being the previous one times sign, and the zeroes of the 6 being
due to the same reason.

Let us now examine the two characters of degree 5, let χ be one of them, and
ρ a representations that affords it. If the value on any odd element is nonzero,
then the two characters differ by the sign character. In fact, the eigenvalues of
(12) can be ±1. Now χ((12)) ∈ { ±5,±3 } yield an excessive contribution of 50 or
18 to the sum
(6.12.1) |CS5(g) | =

∑
χ∈Irr(S5)

|χ(g) |2

which should give 12. This is an argument we will use again in the following. Thus
χ((12)) = ±1, and we’ll choose the first character to take the value 1.

Now note that the conjugate of this first character cannot be the other char-
acter of degree 5, so this character must take real values.

Consider the eigenvalues of ρ((12345)). Since all 5-cycles are conjugate, either
these eigenvalues are all 1, but then χ((12345)) = χ(1), so that (12345) ∈ ker(ρ)
and as A5 is simple, ρ is an irreducible representation of S5/A5, a contradiction
(alternatively, in an argument that we will reprise below, in (6.12.1), which should
take value 5, this would contribute 24 · χ((12345))2 = 24 · 25, which is too much),
or they must be 1, ω, ω2, ω3, ω4, where ω is a primitive 5-th root of 1, so that
χ((12345)) = 0.

Checking (6.12.1) on the (1234) column, we see that the values have modulo
1 here, and be real, so that they are ±1. Write α,−α for these values.

# 1 15 10 20 20 30 24
1 (12)(34) (12) (123) (123)(45) (1234) (12345)
1 1 1 1 1 1 1

sign 1 1 −1 1 −1 −1 1
4 0 2 1 −1 0 −1
4 0 −2 1 1 0 −1
5 1 α 0
5 −1 −α 0
6 0 0 0

An eigenvalue argument with the 3-cycles shows that the eigenvalues must be
1, φ, φ2, φ, φ2, where φ is a primitive 3-rd root of unity. In fact is these eigenvalues
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were 1, 1, 1, φ, φ2, then χ((123)) = 2, and (6.12.1), which should be 6, is at least
4 + 2 · 22 = 12, a contradiction. So χ((123)) = −1.

Checking (6.12.1), we see that on (123)(45) we have values of modulo 1, and
real, so that they are ±1. Let them be ±β.

Note that (12)(34) must have eigenvalues ±1, so the value of characters on it
are integers. Now using (6.12.1) on that column, we see that the value must be
h = ±1 (and then the value of the character of degree 6 must be ±2.)

# 1 15 10 20 20 30 24
1 (12)(34) (12) (123) (123)(45) (1234) (12345)
1 1 1 1 1 1 1
1 1 −1 1 −1 −1 1
4 0 2 1 −1 0 −1
4 0 −2 1 1 0 −1
5 h 1 −1 β α 0
5 h −1 −1 −β −α 0
6 ±2 0 0 0

But now checking orthogonality of the two characters of degree 5 with the
trivial character we find

• 5 + 15h− 20 = 0, so h = 1, and
• 1 + 2β + 3α = 0,

and thus β = 1 and α = −1. We get
1 15 10 20 20 30 24
1 (12)(34) (12) (123) (123)(45) (1234) (12345)
1 1 1 1 1 1 1
1 1 −1 1 −1 −1 1
4 0 2 1 −1 0 −1
4 0 −2 1 1 0 −1
5 1 1 −1 1 −1 0
5 1 −1 −1 −1 1 0
6 −2 0 0 0 0 1

where the last line comes from the columns, and orthogonality to the trivial char-
acter.

6.12.5. A5. Let us start from S5, where we get
1 15 20 12 12
1 (12)(34) (123) (12345) (13524)
1 1 1 1 1
4 0 1 −1 −1
5 1 −1 0 0
6 −2 0 1 1

For the last character χ we have (χ, χ) = 2, the other remaining irreducible. Thus
χ splits as the sum of two irreducible characters of degree 3 each (check sum of
squares of degrees).
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Note here that (12345) is conjugate to its inverse, but not to its square. So the
eigenvalues (which cannot be all 1, as A5 is simple) must be 1, ω, ω−1 for (12345),
and 1, ω2, ω−2 for (13524). Note 1 + ω + ω−1 = −ω2 − ω−2 etc.

A similar argument gets the value zero on (123), and then orthogonality with
the trivial character does it for (12)(34).

1 15 20 12 12
1 (12)(34) (123) (12345) (13524)
1 1 1 1 1
4 0 1 −1 −1
5 1 −1 0 0
3 −1 0 −ω − ω−1 −ω2 − ω−2

3 −1 0 −ω2 − ω−2 −ω − ω−1

Note that the two characters of degree 3 are Galois-conjugate.

6.13. A non-linear character vanishes somewhere

Taken from [Isa06, p. 40].

6.13.1. Lemma. Let G be a cyclic group of order n, and write S ⊆ G for the
set of elements of G of order n.

Let χ be a character of G such that χ(s) 6= 0 for all s ∈ S.
Then ∑

s∈S
|χ(s) |2 ≥ |S | .

Proof. Let E/Q be the splitting field of xn−1, and H = Gal(E/Q) its Galois
group. An element h ∈ H takes an n-th root of unity ω to a power ωm, for some
m coprime to n. Since

χ(s) = ω1 + · · · + ωt

for some n-th roots of unity ωi, we will have
χ(s)h = ωm1 + · · · + ωmt .

For m coprime to n, the map x → xm is a permutation of G (actually an
isomorphism), and in particular a bijection on S. If ρ affords χ, we have for s ∈ S

ρ(sm) = ρ(s)m =


ω1

ω2
. . .

ωt


m

=


ωm1

ωm2
. . .

ωmt

 ,
so that
(6.13.1) χ(s)h = χ(sm).

Now H is an abelian group, isomorphic to (Z/nZ)∗. By Lemma 1.13.1, we
have for α ∈ E and h ∈ H

(6.13.2) (|α |2)h =
∣∣∣αh ∣∣∣2 .
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Since for m coprime to n, the map x 7→ xm is a permutation of S, we obtain that∏
s∈S

|χ(s) |2

is invariant under H by (6.13.1) and (6.13.2), and thus rational. Since it is an
algebraic integer (Corollary 1.11.6), it is an integer. Since χ does not vanish on
S, we have ∏

s∈S
|χ(s) |2 ≥ 1.

By the arithmetic/geometric means inequality, we obtain
1

|S |
∑
s∈S

|χ(s) |2 ≥ (
∏
s∈S

|χ(s) |2)1/|S | ≥ 1.

□
6.13.2. Theorem (Burnside). Let G be a finite group, and χ be an irreducible,

non-linear character of G.
Then there is g ∈ G such that χ(g) = 0.

Proof. Suppose the irreducible character χ satisfies χ(g) 6= 0 for all g ∈ G.
Consider the equivalence relation on G given by

aRb iff 〈 a 〉 = 〈 b 〉 .
The equivalence class S of an element a, of some order n, is thus given by the set
of elements of order n of the cyclic group 〈 a 〉.

Lemma (6.13.1) yields that for each such class S we have∑
s∈S

|χ(s) |2 ≥ |S | .

Summing over all equivalence classes of non-identity elements, we get∑
16=g∈G

|χ(g) |2 ≥ |G | − 1.

Therefore
|G | = |G | (χ, χ) =

∑
g∈G

|χ(g) |2 ≥ |G | − 1 + χ(1)2,

which yields χ(1) ≤ 1, so that χ is linear. □

6.14. Integrality

Recall that character values, as sum of roots of unity, are algebraic integers
(Corollary 1.11.6).

If ρ is a linear representation of G, and g ∈ G has order n, then
1 = ρ(1) = ρ(gn) = ρ(g)n.

It follows that ρ(g) is a root of xn − 1, so that the minimal polynomial of ρ(g) is
a divisor of xn − 1, and thus the eigenvalues of ρ(g) are n-th roots of unity. We
obtain
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6.14.1. Proposition. Character values, as sum of roots of unity, are algebraic
integers.

6.14.2. Exercise.
(1) Show that is ρ is the right regular representation, and g ∈ G has order n,

then the minimal polynomial of ρ(g) is xn − 1.
(2) Show that the above need not hold for an arbitrary representation. Avoid

the trivial case when ρ(g) = 1, and try and find an example in which
| g | = | ρ(g) |.

6.14.3. Theorem. Let f : G → C be a class function on the group G, whose
values are algebraic integers, so that

α =
∑
g∈G

f(g)g ∈ Z(C[G]),

where Z(C[G]) is a commutative ring with unity of characteristic zero.
(1) α is integral.
(2) If χ is an irreducible character of G, then

1
χ(1)

∑
g∈G

f(g)χ(g) = |G |
χ(1)

(f, χ)

is an algebraic integer.

Proof. Let S be the subset of the commutative ring Z(C[G]) consisting of
the ∑g∈G f(g)g, where f is a class function with integer values. The elements∑
C = ∑

g∈C g, for C a conjugacy class, are a basis of S as a Z-module.
We claim that S is a subring of Z(C[G]). In fact, let C,D be two conjugacy

classes. Since Z(C[G]) is a subring of C[G], we will have

(
∑

C) · (
∑

D) =
∑
E

λ(C,D,E)E,

where E ranges over the set of conjugacy classes, and λ(C,D,E) ∈ C. But
λ(C,D,E) counts how many times a fixed element e ∈ E occurs as a product
cd, for c ∈ C and d ∈ D, and this is a (non-negative) integer. (See the example
following this proof.)

Since the ring S is finitely generated as a Z-module, all of its elements are
integral (Theorem 1.11.7.)

Consider now the subring T of Z(C[G]) consisting of the α = ∑
g∈G f(g)g,

where f is a class function with algebraic integer values. Since sums and product
of integral elements are integral (Corollary 1.11.5), it follows that α is integral.

Applying rχ to α, and appealing to Theorem 6.3.2, we obtain the second part,
since clearly the image under a ring morphism of an integral element is integral,
and thus that number is an algebraic integer. □

6.14.4. Example. Let G = S3, C = { (12), (13), (23) }, D = { (123), (132) }.
We have the products
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(123) (132)
(12) (13) (23)
(13) (23) (12)
(23) (12) (13)

Thus
(
∑

C)(
∑

D) = 2
∑

C.

6.14.5. Theorem (Burnside). If C = xG, D = yG and E = zG, then

λ(C,D,E) = |G |
|CG(x) | · |CG(y) |

∑
χ∈Irr(G)

χ(x)χ(y)χ(z−1)
χ(1)

.

Proof. Recall that in the isomorphism

C[G] →
∑

χ∈Irr(G)
Mχ(1)(C)

an element g ∈ G goes in the element

(ρ(g))χ
whose χ-th component is just ρ(g), where ρ affords χ.

So if gG = { gx1 , . . . , gxn }, with the gxi distinct, we have∑
gG = gx1 + · · · + gx

n 7→ (ρ(gx1) + · · · + ρ(gxn))χ

In an argument that we have already seen in Theorem 6.3.2, ρ(gx1) + · · · + ρ(gxn)
is a scalar matrix aI (where a ∈ C, and I is a suitable identity matrix), so that∣∣∣ gG ∣∣∣χ(g) = trace(ρ(gx1) + · · · + ρ(gxn)) = trace(aI) = aχ(1),

as the trace is a class function.
So if we now consider the isomorphism of rings

Z(C[G]) →
∑

χ∈Irr(G)
C,

we have ∑
gG 7→


∣∣∣ gG ∣∣∣χ(g)
χ(1)


χ

Thus

(
∑

gG)(
∑

hG) 7→


∣∣∣ gG ∣∣∣χ(g)

∣∣∣hG ∣∣∣χ(h)
χ(1)2


χ

We want to find the integers λ(g, h, w) such

(6.14.1)


∣∣∣ gG ∣∣∣χ(g)

∣∣∣hG ∣∣∣χ(h)
χ(1)2


χ

=
∑
w

λ(g, h, w)


∣∣∣wG ∣∣∣χ(w)

χ(1)


χ

,

where w ranges over a set of representatives of the conjugacy classes of G.
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Multiply both sides of (6.14.1) componentwise by χ(z−1)χ(1), for a fixed z,
and sum over χ ∈ Irr(G). By Lemma 6.14.7 below, the right-hand side becomes∑
w

∣∣∣wG ∣∣∣λ(g, h, w)
∑

χ∈Irr(G)
χ(z−1)χ(w) = λ(g, h, z)

∣∣∣ zG ∣∣∣ · |CG(z) | = λ(g, h, z) |G | ,

where we have used orbit-stabiliser, so that we obtain

∑
χ∈Irr(G)

∣∣∣ gG ∣∣∣χ(g)
∣∣∣hG ∣∣∣χ(h)χ(z−1)
χ(1)

= λ(g, h, z) |G | ,

which yields the claim, keeping in mind that by orbit-stabiliser∣∣∣ gG ∣∣∣ ∣∣∣hG ∣∣∣
|G |

= |G |

∣∣∣ gG ∣∣∣
|G |

∣∣∣hG ∣∣∣
|G |

= |G |
|CG(g) | |CG(h) |

.

□
6.14.6. Example (Example 6.14.4 revisited). We compute (∑C)(∑D) using

Theorem 6.14.5 and the table of Subsection 6.12.1.

λ(C,D, { 1 }) = 6
3 · 2

∑
χ

χ(12)χ(123)χ(1)
χ(1)

= 1 − 1 + 0 · (−1) = 0.

λ(C,D,C) =
∑
χ

χ(12)χ(123)χ(12)
χ(1)

= 1 + (−1)2 + 0 · (−1) · 0
2

= 2.

λ(C,D,D) =
∑
χ

χ(12)χ(123)χ(123)
χ(1)

= 1 + (−1) · 1 · 1 + 0 · (−1) · (−1)
2

= 0.

6.14.7. Lemma (The other orthogonality relations). For z, w ∈ G

∑
χ∈Irr(G)

χ(z−1)χ(w) =

|CG(z) | if z and w are conjugate,
0 otherwise.

Proof. Consider the extended character table Y , whose (χ, g) entry is
∣∣∣ gG ∣∣∣1/2

χ(g).
The orthogonality relations yield Y Y t = |G | I, for a suitable identity matrix I.
Therefore Y tY = |G | I, and this means that for z, w ∈ G

∑
χ∈Irr(G)

∣∣∣ zG ∣∣∣1/2
χ(z−1)

∣∣∣wG ∣∣∣1/2
χ(w) =

|G | if z and w are conjugate,
0 otherwise.

When z and w are conjugate, we have thus∑
χ∈Irr(G)

|χ(z) |2 =
∑

χ∈Irr(G)
χ(z)χ(z) =

∑
χ∈Irr(G)

χ(z−1)χ(z) = |G |
| zG |

= |CG(z) | .

When z and w are not conjugate, we have ∑χ∈Irr(G) χ(z−1)χ(w) = 0. □
Note the following consequence of Lemma 6.14.7, which states that the size of

a centraliser does not increase when going from a group to a quotient group.
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6.14.8. Proposition. Let G be a finite group, N ⊴ G, x ∈ G.
Then

|CG(x) | ≥
∣∣∣CG/N(xN)

∣∣∣ .
Proof via characters. We know that every (irreducible) representation

of G/N corresponds to a(n irreducible) representation of G with N in its kernel.
Witn a slight abuse of notation, then∣∣∣CG/N(xN)

∣∣∣ =
∑

χ∈Irr(G/N)
|χ(xN) |2 ≤

∑
χ∈Irr(G)

|χ(x) |2 = |CG(x) | .

□

Direct proof. By orbit-stabiliser

|CG(x) | = |G |
|xG |

,
∣∣∣CG/N(xN)

∣∣∣ = |G/N |
| (xN)G/N |

= |G |
|N | · | (xN)G/N |

.

We have thus to prove that

(6.14.2)
∣∣∣xG ∣∣∣ ≤ |N | ·

∣∣∣ (xN)G/N
∣∣∣ .

We have

(6.14.3) (xN)G/N =
{

(xN)gN : g ∈ G
}

= {xgN : g ∈ G } .

Consider the union of the
∣∣∣ (xN)G/N

∣∣∣ cosets in the left-hand side of (6.14.3). This
union has |N |·

∣∣∣ (xN)G/N
∣∣∣ elements. Now the union of the cosets in the right-hand

side of equation (6.14.3) is xGN ⊇ xG. We obtain (6.14.2). □

Coming back to our mainline, we have

6.14.9. Corollary (to Theorem 6.14.3). If χ is an irreducible character, then
χ(1) divides the order of G.

Proof. In part (2) of Theorem 6.14.3, take f = χ to get that |G | /χ(1) is a
rational number which is an algebraic integer, and thus it is an integer. □

6.14.10. Proposition. Let ρ be an irreducible representation, and χ be its
character. Let g ∈ G. We have

(1) ∣∣∣ gG ∣∣∣ · χ(g)
χ(1)

is an algebraic integer.
Suppose now gcd(

∣∣∣ gG ∣∣∣ , χ(1)) = 1. Then
(2) χ(g)/χ(1) is an algebraic integer.
(3) If χ(g) 6= 0, then ρ(g) is a scalar matrix.
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Proof. Let f : G → C be the class function that is zero everywhere, except
on the conjugacy class of g, where its value is 1, so that∑

x∈G
f(x)χ(x) =

∣∣∣ gG ∣∣∣χ(g).

By Theorem 6.14.3(2),
∣∣∣ gG ∣∣∣ · χ(g)/χ(1) is an algebraic integer.

If gcd(
∣∣∣ gG ∣∣∣ , χ(1)) = 1, by Bézout, there are a, b ∈ Z such that

a
∣∣∣ gG ∣∣∣+ bχ(1) = 1.

Multiplying by χ(g)
χ(1)

we get

χ(g)
χ(1)

= a
∣∣∣ gG ∣∣∣ · χ(g)

χ(1)
+ bχ(g).

Since both
∣∣∣ gG ∣∣∣ · χ(g)/χ(1) and χ(g) are algebraic integers, so is χ(g)/χ(1).

χ(g)/χ(1) is of the form of (1.13.1) of Lemma 1.13.4, with χ(g) 6= 0 by as-
sumption. Therefore ρ(g) is a scalar. □

6.15. Clifford Theory

Let G be a finite group, N ⊴ G.
Let V be an irreducible C[G]-module, with character χ ∈ Irr(G). Let U be an

irreducible C[N ]-submodule of the C[N ]-module VN , with character µ ∈ Irr(N).
We claim that for all g ∈ G, then subspace Ug is a C[N ]-submodule of VN . In

fact for n ∈ N we have (Ug)n = (Ugng−1)g ∈ Ug, as N ⊴ G.
Let ui be a basis of U , so that uig is a basis of Ug. If uin = ∑

aiui, for some
n ∈ N , then µ(n) = ∑

ai. Since, as above (uig)n = (uigng−1)g, we have that the
character associated to the C[N ] module Ug is µg given by

µg(n) = µ(gng−1).

Note that

(µg, µg)N = 1
|N |

∑
n∈N

µ(gng−1)µ(gng−1) = 1
|N |

∑
n∈N

µ(n)µ(n) = (µ, µ)N = 1,

as for a given g ∈ G, the map N → N given by n → gng−1 is a bijection. Thus
all µg ∈ Irr(N).

It follows readily that G acts on the set Irr(N) by νg(n) = ν(gng−1). The
inertia subgroup I = IG(µ) is the stabilser of µ in this action. Clearly N ≤ I ≤ G.

Now note that ∑g∈G Ug is a non-trivial C[G]-submodule of V , and thus co-
incides with V , as the latter is irreducible. Moreover, let e = (χN , µ) be the
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multiplicity of µ in χN . For g ∈ G we have, as χ is a class function

(χN , µg) = 1
|N |

∑
n∈N

χ(n)µ(gng−1)

= 1
|N |

∑
n∈N

χ(gng−1)µ(gng−1)

= 1
|N |

∑
n∈N

χ(n)µ(n)

= (χN , µ) = e.

Thus all isomorphism types of the C[N ]-modules Ug occur with the same multi-
plicity e in VN .

Now we have Ug ∼= Uh as C[N ]-modules if and only if µg = µh if and only if
µgh

−1 = µ if and only if gh−1 ∈ I if and only if Ig = Ih. Thus if g1, . . . , gt is a
set of representatives of the right I-cosets in G, we have that the Ugi are a set of
representatives of the irreducible C[N ]-submodules of V , and we obtain

(6.15.1) χ = e

(
t∑
i=1

µgi

)
.

Note that χ(1) = etµ(1) = e · |G : I | · µ(1).
Now W = ∑

h∈I Uh is a C[I]- module, which is a direct sum of modules
isomorphic to U . Let ϑ be the associated character of I. We have
(6.15.2) (ϑG, χ)G = (ϑ, χI)I .
Now VI = W ⊕ Z for some C[I]-submodule Z, by Maschke’s Theorem, so the
value of (6.15.2) is > 0, so that χ is a constituent of ϑG. Since

ϑG(1) = |G : I |ϑ(1) = |G : I | eµ(1) = χ(1),
it follows that ϑG = χ. Finally, if ζ is the character of I associated to Z, we have

(ϑ, ϑ)I ≤ (ϑ, ϑ+ ζ)I
= (ϑ, χI)I
= (ϑG, χ)G = 1,

so that (ϑ, ϑ)I = 1, that is, ϑ ∈ Irr(I), and W is an irreducible C[I]-module.
Summing it up,

6.15.1. Theorem (Clifford). Let G be a finite group, N ⊴ G.
Let χ ∈ Irr(G). Let µ ∈ Irr(N) be a constituent of χN .
Then

χ = e

(
t∑
i=1

µgi

)
,

for some e > 0, and t = |G : IG(µ) |.
Moreover, χ = ϑG for some ϑ ∈ Irr(IG(µ)).



CHAPTER 7

Applications

7.1. Burnside paqb

In this section we report the celebrated theorem of Burnside [Bur04], that
shows that finite group of order divisible of at most two primes are soluble. (A5
is non-abelian simple, of order 22 · 3 · 5.)

Burnside’s proof makes use of characters, whose theory he had contributed to
developing. Burnside published his proof in 1904. One had to wait until the 1970’s
for proofs not using characters [Gol70, Ben72, Mat73].

7.1.1. Lemma. Let G be a finite group, 1 6= g ∈ G such that its conjugacy class
has order a power of a prime p.

Then there is a proper normal subgroup N of G such that gN ∈ Z(G/N).

Proof. From Lemma 6.14.7 we have∑
χ∈Irr(G)

χ(1)χ(g) = 0,

and thus ∑
16=χ∈Irr(G)

χ(1)χ(g)
p

= −1
p
.

Since the right-hand side is not an algebraic integer, there is 1 6= χ ∈ Irr(G)
such that χ(1)χ(g)/p is not an algebraic integer, so that χ(g) 6= 0, and p ∤ χ(1).
Since

∣∣∣ gG ∣∣∣ is a power of p, it follows that gcd(
∣∣∣ gG ∣∣∣ , χ(1)) = 1. Now Proposi-

tion 6.14.10(3) yields that ρ(g) is scalar, where ρ is a representation that affords
χ. Since χ 6= 1, we have that ker(ρ) is a proper normal subgroup of G, and the
first isomorphism theorem yields G/ ker(ρ) ∼= ρ(G). Since ρ(g) is scalar, it is in
the centre of ρ(G), and thus g ker(ρ) is in the centre of G/ ker(ρ). □

7.1.2. Theorem (Burnside paqb). A group of order paqb, where p and q are
primes, is soluble.

Proof. Note first of all that groups of order the power of a prime are nilpotent
(and thus soluble), as follows from the class equation. One can avoid a reference
to nilpotent groups by noting that the class equation yields that if G is a non-
trivial p-group, then Z(G) is non-trivial. Proceeding by induction on the order of
the group, G/Z(G) is soluble, and so is Z(G) (which is actually abelian), so G is
soluble.

Therefore we may assume that both p and q divide the order of G.
81
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If G is not simple, so that there is a normal subgroup N , with { 1 } < N < G,
then proceeding by induction on the order of G we have that N and G/N are
soluble, so that G is soluble by Theorem 3.2.6(4).

Thus we may assumeG to be non-abelian simple. Were { 1 } the only conjugacy
class of order not divisible by q, then the order of G would congruent to 1 modulo
q, a contradiction to the fact that q divides the order of G.

So there is an element 1 6= g ∈ G whose conjugacy class gG has order not divis-
ibile by q and thus, by orbit-stabiliser, gG has order a power of p. By Lemma 7.1.1,
g ∈ Z(G), a contradiction. □

7.2. Frobenius groups and the Frobenius kernel

A Frobenius group is a finite group which acts transitively on a finite set Ω,
such that the stabilisers are non-trivial (so the group does not act regularly) and
pairwise disjoint, that is, for α, β ∈ Ω, with α 6= β, we have Gα ∩ Gβ = { 1 }. A
typical example is S3.

Note that if g ∈ G \ Gα, then αg 6= α, and thus Gα ∩ Gαg = { 1 }. Since
Gαg = Gg

α, we obtain in particular, NG(Gα) = Gα. More strongly, if h ∈ Gα and
g ∈ G is such that hg ∈ Gα, then hg ∈ Gα ∩Gαg , so that α = αg and g ∈ Gα.

Since G is transitive, the stabilisers are all conjugate. An abstract character-
isation of Frobenius groups is thus as the finite groups G which have a subgroup
H 6= { 1 } such that H ∩ Hg = { 1 } for g ∈ G \ H. In fact, letting G act on the
cosets Hg of H in G by right multiplication, we have that the action is transitive,
and the stabiliser of Hg is Hg.

The subgroup H is called a Frobenius complement.
For the following theorem, no character-free proof is known.

7.2.1. Theorem. Let G be a Frobenius group with respect to the subgroup H.
Then N = { 1 } ∪ (G \ ⋃g∈GH

g) is a normal subgroup of G, so that G is the
semidirect product of N by H.

The subgroup N is called the Frobenius kernel. It is clear that N is a normal
set. The point is proving that it is a subgroup.

Note that

|N | = |G | − (|G : H | · (|H | − 1)) = |G | − |G | + |G : H | = |G : H | ,

so that G = HN , and N is a transitive subgroup.

Proof 1, from [Isa06]. The idea of this proof is the following.
(1) Suppose first N exists. Then every character of H extends to a character

of G which has N in its kernel. Since for h ∈ H the fact that χ(h) = χ(1)
for all χ ∈ Irr(H) implies h = 1, we obtain that the intersection of all
these kernels is exactly N .

(2) Now our goal is exactly to prove the existence of N .
(3) This we will do by extending every irreducible character of H to a char-

acter of G, and obtaining N as the intersection of the kernels of all these
extensions. Details follow.
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Step 1. Let ϑ be a class function on H such that ϑ(1) = 0. We claim that

(7.2.1) (ϑG)H = ϑ.

Let h ∈ H, h 6= 1. Then

ϑG(h) = 1
|H |

∑
x∈G

ϑ◦(xhx−1).

If ϑ◦(xhx−1) 6= 0 for some x, then 1 6= xhx−1 ∈ H ∩ Hx−1 , so that x ∈ H, and
ϑ◦(xhx−1) = ϑ(h), as ϑ is a class function on H. Therefore

ϑG(h) = 1
|H |

∑
x∈H

ϑ(h) = ϑ(h).

We have then

ϑG(1) = |G |
|H |

ϑ(1) = 0,

so that (7.2.1) holds.

Step 2. Let now 1 6= φ ∈ Irr(H), and write ϑ = φ − φ(1)1H , so that ϑ is a
class function on H with ϑ(1) = 0.

By Frobenius reciprocity and (7.2.1), we have

(ϑG, ϑG)G = (ϑ, (ϑG)H)H = (ϑ, ϑ)H = (φ− φ(1)1H , φ− φ(1)1H)H = 1 + φ(1)2,

as 1 6= φ ∈ Irr(H).
Now (ϑG, 1G)G = (ϑ, 1H)H = −φ(1), so that ϑG = φ∗ − φ(1)1G, where φ∗ is a

class function on G such that (φ∗, 1G) = 0. Since

1 + φ(1)2 = (ϑG, ϑG)G = (φ∗ − φ(1)1G, φ∗ − φ(1)1G) = (φ∗, φ∗)G + φ(1)2,

we get (φ∗, φ∗)G = 1.

Step 3. ϑ is a difference of characters, so that ϑG also is, and thus so is
φ∗ = ϑG + φ(1)1G. Writing φ∗ as a linear combination with integer coefficients of
irreducible characters, we see that ±φ∗ ∈ Irr(G). But since for h ∈ H one has

(7.2.2) φ∗(h) = ϑG(h) + φ(1) = ϑ(h) + φ(1) = φ(h),

we have φ∗(1) > 0, so that φ∗ ∈ Irr(G).

Step 4. For every 1H 6= φ ∈ Irr(H) we have obtained an extension φ∗ ∈
Irr(G). Consider the intersection of all of their kernels

M =
⋂

{ ker(φ∗) : 1H 6= φ ∈ Irr(H) } .

If x ∈ M ∩H, then (7.2.2) yields φ(x) = φ∗(x) = φ∗(1) = φ(1) for all φ ∈ Irr(H).
By Lemma 6.7.1, x is in the kernel of all irreducible representations, and thus
x = 1.
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Step 5. Now note that if M is a normal subgroup of G such that M ∩H = 1,
then M ∩Hx = 1 for all x, and thus M ⊆ N .

Conversely, if 1 6= g ∈ N , then
φ∗(g) − φ∗(1) = φ∗(g) − φ(1) = ϑG(g) = 0,

so that g ∈ M , and N = M is a normal subgroup of G. □
Proof 2, from [Ser16]. Let ψ be any class function on H. Then there is a

unique class function ψ′ on G which extends ψ and is constant on N .
If a conjugacy class of G does intersect H trivially, then it is contained in N ,

whence the uniqueness.
As to existence,

ψ′(x) =

ψ(1) if x ∈ N

ψ(h) if x = hg, for some h ∈ H and g ∈ G.

Note that ψ′ is well-defined. In fact if hg1
1 = hg2

2 , then h
g1g

−1
2

1 = h2 ∈ H, whence
g1g

−1
2 ∈ H, and h1, h2 are conjugate in H.
In the rest of the proof, we will use the scalar product

(α, β)G =
∑
g∈G

α(g)β(g−1)

on G, and the analogue on H.
Let now ϑ be a class function on G. We claim that

(7.2.3) (ϑ, ψ′)G = (ϑH , ψ)H + ψ(1)(ϑ, 1)G − ψ(1)(ϑH , 1)H .
Note this expression is linear in ψ. It holds true when ψ ≡ k ≡ ψ′ is an integer k,
thus it suffices to consider the case when ψ(1) = 0, so that ψ ≡ 0 on N , when the
expression becomes

(ϑ, ψ′)G = (ϑH , ψ)H .
Let T be a left transversal of H in G (that is, a complete set of representatives
of the left cosets of H in G), so that the H t are the conjugates of H, for t ∈ T ,
and every conjugate different from 1 of an element of H can be written uniquely
as ht, for h ∈ H and t ∈ T .

(ϑ, ψ′)G = 1
|G |

∑
g∈G

ϑ(g)ψ′(g−1)

= 1
|G |

∑
(t,h)∈T×H

ϑ(h)ψ′(t−1h−1t)

= |T |
|G |

∑
h∈H

ϑ(h)ψ′(h−1)

= (ϑH , ψ)H .
Now we claim that for ψi class functions on H, we have

(ψ1, ψ2)H = (ψ′
1, ψ

′
2)G,

that is, the map ψ 7→ ψ′ is an isometry.
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In fact, setting ϑ ≡ 1 in (7.2.3) we get (1, ψ′)G = (1, ψ)H . If we define ψ∗(g) =
ψ(g−1), we have

(ψ′
1, ψ

′
2)G = (ψ′

1ψ
∗
2

′, 1)G = ((ψ1ψ
∗
2)′, 1)G = (ψ1ψ

∗
2, 1)H = (ψ1, ψ2)H .

Now we claim that if ψ is a character of H and ϑ is a character of G, then
(ψ′, ϑ)G is an integer. This is because ϑH is a character of H, and thus every term
of the right-hand side of (7.2.3) is an integer.

We now claim that if χ ∈ Irr(H), then χ′ ∈ Irr(G). We have χ′ = ∑
ϑ∈Irr(G) cϑϑ,

for some cϑ ∈ C. By the previous step, cϑ ∈ Z. Since ∑ϑ∈Irr(G) c
2
ϑ = (χ′, χ′)G =

(χ, χ)H = 1, all ci are zero except for one cϑ0 , which is ±1. If cϑ0 = −1, then
χ′ = −ϑ0, contradicting χ′(1) = χ(1) > 0 and ϑ0(1) > 0. Thus χ′ = ϑ0.

It follows that is χ is a character of H, then χ′ is a character of G.
Finally, let ρ be a faithful representation of H, such as the right regular one,

and χ be its character. By the previous step, χ′ is the character of a representation
ρ′ of G. If g ∈ G is conjugate to an element different from 1 of H, then χ′(g) =
χ(h) 6= χ(1) = χ′(1), so that ρ′(g) 6= 1. If g ∈ N , then χ′(g) = χ(1) = χ′(1), so
that ρ′(g) = 1. It follows that N coincides with ker(ρ′), and thus it is a (normal)
subgroup of G. □

7.3. Groups with an abelian Sylow p-subgroup

This is taken from [Isa06, p. 63].

7.3.1. Theorem. Let G be a finite group, p a prime dividing the order of G.
Suppose a p-Sylow subgroup is abelian.
Then G′ ∩ Z(G) is not divisible by p.

Proof. Suppose, by way of contradiction, that there is a subgroup U ≤ G′ ∩
Z(G) of order p, and let P be a Sylow p-subgroup cotaining U .

Let λ 6= 1U be an irreducible character of U . By Corollary 6.10.7, λ = µU for
some irreducible character µ of P .

If
(7.3.1) µG =

∑
aχχ,

for χ ∈ Irr(G), then
µG(1) = |G : P | · µ(1) = |G : P |

is coprime to p. It follows there is χ ∈ Irr(G), which occurs in (7.3.1) with a non-
zero coefficient aχ, such that p ∤ χ(1). Thus 0 6= aχ = (µG, χ) = (µ, χP ), that is,
µ is a consituent of χP , and thus λ = µU is a constituent of χU . Since U ≤ Z(G),
we have χU = χ(1)λ and det(χ)U = λχ(1). Since U ≤ G′, we have det(χ)U = 1U
and λχ(1) = 1U . Therefore p ∤ χ(1), λ 6= 1U and |U | = p, a contradiction. □
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