TRENTO, 2020/21 ADVANCED GROUP THEORY

EXERCISE SHEET \# 8

Exercise 8.1. Let G be a finite group, $\rho: G \rightarrow \mathrm{GL}(V)$ a representation of G, and λ a linear character of G.
(1) Show that $\lambda \rho$, defined as $(\lambda \rho)(g)=\lambda(g) \rho(g)$ is a representation $G \rightarrow$ $\mathrm{GL}(V)$.
(2) If the character of ρ is χ, show that the character of $\lambda \rho$ is $\lambda \chi$.
(3) Show that ρ is irreducible if and only if $\lambda \rho$ is. Do it in two ways
(a) Using the fact that a character χ is irreducible iff $(\chi, \chi)=1$.
(b) Using directly the definition of an irreducible representation.
(4) Use the above to show that for the non-linear character χ of S_{3} we must have $\chi((12))=0$.

Exercise 8.2. Let G be finite group acting on the finite set Ω.
(1) Define the associated permutation representation ρ and its character χ.
(2) Show that $\chi(g)=F(g)=\left\{\alpha \in \Omega: \alpha^{g}=\alpha\right\}$ is the number of fixed point of g.
(3) Show that the numer of orbits of G on Ω is given by

$$
\frac{1}{|G|} \sum_{g \in G} F(g)=(1, \chi),
$$

where 1 denotes the trivial character.
(4) Show that G acts transitively on Ω (i.e., there is only one orbit) iff $\chi=$ $1+\psi$, where ψ is a character such that $(1, \psi)=0$.
(5) Define what is meant for G to act double transitively on Ω (one also says G acts 2-transitively, or that G is 2-transitive).
(6) Show that G is 2 -transitive iff ψ is irreducible.

Exercise 8.3. Let G be a finite group acting on the finite set Ω. In general, one says that G acts k-transitively on Ω if for any distinct $\alpha_{1}, \ldots, \alpha_{k} \in \Omega$, and any distinct $\beta_{1}, \ldots, \beta_{k} \in \Omega$, there is $g \in G$ such that $\alpha_{i}^{g}=\beta_{i}$ for all i.
(1) Prove that to show that G is k-transitive, it is enough to show that for a fixed set of distinct $\gamma_{1}, \ldots, \gamma_{k} \in \Omega$ and any distinct $\beta_{1}, \ldots, \beta_{k} \in \Omega$, there is $g \in G$ such that $\gamma_{i}^{g}=\beta_{i}$ for all i.
(Hint: Given any distinct $\alpha_{1}, \ldots, \alpha_{k} \in \Omega$ and any distinct $\beta_{1}, \ldots, \beta_{k} \in \Omega$, by assumption there is a $g \in G$ such that $\gamma_{i}^{g}=\alpha_{i}$ for all i, and an $h \in G$ such that $\gamma_{i}^{g}=\beta_{i}$. Then $\alpha_{i}^{g^{-1} h}=\gamma_{i}^{h}=\beta_{i}$ for all i.)
(2) Show that if G is k-transitive, for $k>1$, then it is also $(k-1)$-transitive.
(3) Show that S_{n} is n-transitive in its natural action on $\{1,2, \ldots, n\}$.
(4) Show that A_{n} is $(n-2)$-transitive, but not $(n-1)$-transitive in its natural action on $\{1,2, \ldots, n\}$.
(Hint: Given distinct $\beta_{1}, \ldots, \beta_{n-2}$, by the above there is $g \in S_{n}$ such that $i^{g}=\beta_{i}$ for all $i=1, \ldots, n-2$. If g is even, we are done. If g is odd, then
$(n-1, n) g$ is even, and $i^{(n-1, n) g}=i^{g}=\beta_{i}$ for all $i=1, \ldots, n-2$. This shows that A_{n} is $(n-2)$-transitive. Now note that the only permutation g such that $i^{g}=i$ for $i=1, \ldots, n-2$ and $(n-1)^{g}=n$ is the 2 -cycle $(n-1, n)$, which is odd. This shows that A_{n} is not $(n-1)$-transitive.)
Exercise 8.4. Construct the character tables of S_{4} and A_{4}.

