TRENTO, 2020/21 ADVANCED GROUP THEORY EXERCISE SHEET # 8

Exercise 8.1. Let G be a finite group, $\rho : G \to \operatorname{GL}(V)$ a representation of G, and λ a linear character of G.

- (1) Show that $\lambda \rho$, defined as $(\lambda \rho)(g) = \lambda(g)\rho(g)$ is a representation $G \to \operatorname{GL}(V)$.
- (2) If the character of ρ is χ , show that the character of $\lambda \rho$ is $\lambda \chi$.
- (3) Show that ρ is irreducible if and only if λρ is. Do it in two ways
 (a) Using the fact that a character χ is irreducible iff (χ, χ) = 1.
 - (b) Using directly the definition of an irreducible representation.
- (4) Use the above to show that for the non-linear character χ of S_3 we must have $\chi((12)) = 0$.

Exercise 8.2. Let G be finite group acting on the finite set Ω .

- (1) Define the associated permutation representation ρ and its character χ .
- (2) Show that $\chi(g) = F(g) = \{ \alpha \in \Omega : \alpha^g = \alpha \}$ is the number of fixed point of g.
- (3) Show that the numer of orbits of G on Ω is given by

$$\frac{1}{|G|} \sum_{g \in G} F(g) = (1, \chi),$$

where 1 denotes the trivial character.

- (4) Show that G acts transitively on Ω (i.e., there is only one orbit) iff $\chi = 1 + \psi$, where ψ is a character such that $(1, \psi) = 0$.
- (5) Define what is meant for G to act double transitively on Ω (one also says G acts 2-transitively, or that G is 2-transitive).
- (6) Show that G is 2-transitive iff ψ is irreducible.

Exercise 8.3. Let G be a finite group acting on the finite set Ω . In general, one says that G acts k-transitively on Ω if for any distinct $\alpha_1, \ldots, \alpha_k \in \Omega$, and any distinct $\beta_1, \ldots, \beta_k \in \Omega$, there is $g \in G$ such that $\alpha_i^g = \beta_i$ for all i.

(1) Prove that to show that G is k-transitive, it is enough to show that for a fixed set of distinct $\gamma_1, \ldots, \gamma_k \in \Omega$ and any distinct $\beta_1, \ldots, \beta_k \in \Omega$, there is $g \in G$ such that $\gamma_i^g = \beta_i$ for all i.

(HINT: Given any distinct $\alpha_1, \ldots, \alpha_k \in \Omega$ and any distinct $\beta_1, \ldots, \beta_k \in \Omega$, by assumption there is a $g \in G$ such that $\gamma_i^g = \alpha_i$ for all i, and an $h \in G$ such that $\gamma_i^g = \beta_i$. Then $\alpha_i^{g^{-1}h} = \gamma_i^h = \beta_i$ for all i.)

- (2) Show that if G is k-transitive, for k > 1, then it is also (k 1)-transitive.
- (3) Show that S_n is *n*-transitive in its natural action on $\{1, 2, \ldots, n\}$.
- (4) Show that A_n is (n-2)-transitive, but not (n-1)-transitive in its natural action on $\{1, 2, \ldots, n\}$. (HINT: Given distinct $\beta_1, \ldots, \beta_{n-2}$, by the above there is $g \in S_n$ such that $i^g = \beta_i$ for all $i = 1, \ldots, n-2$. If g is even, we are done. If g is odd, then

(n-1,n)g is even, and $i^{(n-1,n)g} = i^g = \beta_i$ for all $i = 1, \ldots, n-2$. This shows that A_n is (n-2)-transitive. Now note that the only permutation g such that $i^g = i$ for $i = 1, \ldots, n-2$ and $(n-1)^g = n$ is the 2-cycle (n-1,n), which is odd. This shows that A_n is not (n-1)-transitive.)

Exercise 8.4. Construct the character tables of S_4 and A_4 .