TRENTO, 2020/21 ADVANCED GROUP THEORY EXERCISE SHEET # 6

Exercise 6.1.

- (1) Show that the number of irreducible characters (which is the same as the number of pairwise irreducible representations) of a finite group G equals the number of conjugacy classes of G.
- (2) Show that the character of the finite group G are class functions on G, and are a basis of the vector space of class functions $G \to \mathbb{C}$.

Exercise 6.2.

- (1) Define the character table of a group.
- (2) Show that a character table is an invertibile matrix. (HINT: Use the orthogonality relations.)

Exercise 6.3. Describe the character table of a finite cyclic group.

Exercise 6.4. Recall that a character χ is called *linear* if $\chi(1) = 1$.

- (1) Prove that a linear character is irreducible.
- (2) Exhibit an example of a group G and an irreducible character of G which is not linear.
- (3) Prove that the characters of a finite abelian group are all linear.
- (4) Define the product of two characters, and show that it is a class function.
- (5) Prove
 - (a) that the product $\lambda \chi$ of a character χ by a linear character λ is a character, and
 - (b) that χ is irreducible if and only if $\lambda \chi$ is irreducible.

Exercise 6.5. Define the dual group of an abelian group, and show that it is indeed a group.