TRENTO, 2020/21 ADVANCED GROUP THEORY EXERCISE SHEET # 4

- *Exercise* 4.1. (1) Give the definition of an irreducible representation, and of a direct sum of representations.
 - (2) State and prove Maschke's theorem

Exercise 4.2.

- (1) Define a morphism of representations.
- (2) If $f: V_1 \to V_2$ is a morphism of the representations ρ_1, ρ_2 , show that (a) the kernel ker(f) of f is a $\rho_1(G)$ -invariant subspace of V_1 , and
 - (b) the image $V_1 f$ of f is a $\rho_2(G)$ -invariant subspace of V_2 .

Exercise 4.3. Let $G = \langle (12) \rangle$, a cyclic group of order 2, act naturally on $\Omega = \{1, 2\}$.

- (1) Define the representation $\rho: G \to \operatorname{GL}(V)$ naturally associated to it, where V is a \mathbf{F}_2 -vector space of dimension 2, with basis v_1, v_2 . (Here $\mathbf{F}_2 = \{0, 1\}$ is the field with two elements.)
- (2) Write the matrix of $\rho((12))$ with respect to the basis v_1, v_2 .
- (3) Show that the only $\rho(G)$ -invariant subspace of dimension 1 is $\langle v_1 + v_2 \rangle$. (HINT: There are just three subspaces of dimension 1.)
- (4) Write the matrix of $\rho((12))$ with respect to the basis $v_1, v_1 + v_2$.

Exercise 4.4. Let (\cdot, \cdot) be an inner product on the finite dimensional **C**-vector space V.

- (1) Show that if U is a subspace of V, then $V = U \oplus U^{\perp}$.
- (2) Suppose now (\cdot, \cdot) is the standard inner product, and let $A \in End_F(V)$.
 - (a) Show that $A^* = \overline{A}^t$.
 - (b) Show that A is unitary if and only if $A^* = A^{-1}$.

Exercise 4.5. Let G be a finite group

- (1) Let V a finite-dimensional C-vector space, and $\rho : G \to \operatorname{GL}(V)$ a representation. Show that there is an inner product on V so that all elements of $\rho(G)$ are unitary.
- (2) Give a proof of Maschke's Theorem using inner products.
- (3) Show that every representation of G is the direct sum of irreducible ones.

Exercise 4.6.

- (1) State and prove Schur's Lemma.
- (2) Show that if $\rho : G \to \operatorname{GL}(V)$ is irreducible, and $f : V \to V$ is an isomorphism of representations, then $vf = \lambda v$ for some $\lambda \in \mathbb{C}^*$.
- (3) State and prove the orthogonality relations for the components of the irreducible representations.