TRENTO, 2020/21
ADVANCED GROUP THEORY
EXERCISE SHEET \# 3

Exercise 3.1.
(1) Give the definition of a (linear) representation ρ of a finite group on a dfinite dimensional C-vector space V.
(2) Show how to obtain a representation of a finite group G out of an action of G on a finite set.
(3) Give the definition of a $\rho(G)$-invariant subspace, and of a subrepresentation.

Exercise 3.2. Let $G=\langle(12)\rangle$, a cyclic group of order 2, act naturally on $\Omega=$ \{1, 2 \}.
(1) Define the representation $\rho: G \rightarrow \mathrm{GL}(V)$ naturally associated to it, where V is a \mathbf{C}-vector space of dimension 2 , with basis v_{1}, v_{2}.
(2) Write the matrix of $\rho((12))$ with respect to the basis v_{1}, v_{2}.
(3) Let $w_{1}=v_{1}+v_{2}$ and $w_{2}=v_{1}-v_{2}$. Show that
(a) w_{1}, w_{2} is a basis of V.
(b) $W_{1}=\left\langle w_{1}\right\rangle$ and $W_{2}=\left\langle w_{2}\right\rangle$ are $\rho(G)$-invariant subspaces.
(c) Write the matrix of $\rho((12))$ with respect to the basis w_{1}, w_{2}.
(d) (This requires a definition that will be given next week) Show that $V=W_{1} \oplus W_{2}$ is a direct sum of representations.

Exercise 3.3. Let $G=\langle(123)\rangle$, a cyclic group of order 3, act naturally on $\Omega=$ $\{1,2,3\}$.
(1) Define the representation $\rho: G \rightarrow \mathrm{GL}(V)$ naturally associated to it, where V is a \mathbf{C}-vector space of dimension 3 , with basis v_{1}, v_{2}, v_{3}.
(2) Write the matrix of $\rho((123))$ with respect to the basis v_{1}, v_{2}, v_{3}.
(3) Let

$$
\left\{\begin{array}{l}
w_{0}=v_{1}+v_{2}+v_{3} \\
w_{1}=v_{1}+\omega v_{2}+\omega^{2} v_{3} \\
w_{2}=v_{1}+\omega^{2} v_{2}+\omega v_{3}
\end{array}\right.
$$

Show that
(a) w_{0}, w_{1}, w_{2} is a basis of V.
(b) $W_{0}=\left\langle w_{0}\right\rangle, W_{1}=\left\langle w_{1}\right\rangle$ and $W_{2}=\left\langle w_{2}\right\rangle$ are $\rho(G)$-invariant subspaces.
(c) Write the matrix of $\rho((123))$ with respect to the basis w_{1}, w_{2}, w_{3}.
(d) Show that $V=W_{1} \oplus W_{2} \oplus W_{3}$ is a direct sum of representations.

Exercise 3.4. Let G be a finite group, $\mathbf{C}[G]$ the set of functions $G \rightarrow \mathbf{C}$.
(1) Show that $\mathbf{C}[G]$ becomes a \mathbf{C}-vector space with the operations by component:

$$
(\lambda a+\mu b)(x)=\lambda a(x)+\mu b(x),
$$

for $\lambda, \mu \in \mathbf{C}, a, b \in \mathbf{C}[G], x \in G$.
(2) Define on $\mathbf{C}[G]$ the convolution product to be

$$
(a * b)(g)=\sum_{x y=g} a(x) b(y) .
$$

Show that this is associative, and that with these operations $\mathbf{C}[G]$ becomes a ring.
(3) Define, for $g \in G$, the element of $\mathbf{C}[G]$

$$
\delta_{g}(x)= \begin{cases}1 & \text { if } x=g \\ 0 & \text { if } x \neq g\end{cases}
$$

Show that $\delta_{g} * \delta_{h}=\delta_{g h}$ for all $g, h \in G$, so that the map $g \mapsto \delta_{g}$ is a group isomorphism $G \rightarrow\left\{\delta_{g}: g \in G\right\}$.

Notice

The next two exercises are for reference. The universal property of the group algebra will play a role later, and the equivalence of Exercise 3.6 (if not the details of the proof) is essential

Exercise 3.5.

(1) Give the definition of an algebra over a field.
(2) Show that the $n \times n$ matrices over a field F form an F-algebra.
(3) Show that the group algebra $\mathbf{C}[G]$ is indeed an algebra.
(4) State and prove the universal property of the group algebra.

Exercise 3.6.

(1) Let R be a unital ring, M an abelian group. Define what it means for M to have the structure of a right or left R-module.
(2) Let G be finite group, and V a finite-dimensional vector space over \mathbf{C}.
(a) Show that a representation $\rho: G \rightarrow \mathrm{GL}(V)$ yields a structure of a $\mathbf{C}[G]$-module on V.
(b) Show that if $(G, \cdot, 1)$ is a group, $(M, \cdot, 1)$ is a monoid, and $\varphi: G \rightarrow M$ is a morphism of monoids (meaning $\varphi(g h)=\varphi(g) \varphi(h)$ for $g, h \in$ G, and $\varphi(1)=1$), then the image $\varphi(G)$ of φ is a group under the operation "." of M.
(c) Given a structure of a $\mathbf{C}[G]$-module on V, show that this yields a representation $\rho: G \rightarrow \mathrm{GL}(V)$.

