TRENTO, 2020/21 ADVANCED GROUP THEORY EXERCISE SHEET # 1

Exercise 1.1. Let G be a finite group.

- (1) Define the concepts of a series and of a normal series in G.
- (2) Exhibit an example of a series which is not normal.

Exercise 1.2.

- (1) Define the concept of a right operator group (G, Ω, α) .
- (2) If G is an Ω -group (that is, there is a right operator group (G, Ω, α) , for some α), define the concept of an Ω -subgroup of G and of an Ω -series in G.
- (3) Define the concept of characteristic and fully invariant subgroups of a group.
- (4) Exhibit examples of a group G and a subgroup $H \leq G$ such that
 - (a) H is not normal in G;
 - (b) H is normal, but not characteristic in G;
 - (c) H is characteristic, but not fully invariant in G.

Exercise 1.3. Let G be a group, $M < N \triangleleft G$.

- (1) Exhibit an example in which $M \leq N$ but $M \not\leq G$.
- (2) Show that if M is characteristic in N, then $M \triangleleft G$.

Exercise 1.4.

- (1) Define the concept of a refinement of an Ω -series, and of an Ω -composition series of a finite group.
- (2) Show that the quotients in a composition series of a group G (thus $\Omega = \emptyset$ here) are simple groups.
- (3) Show that the quotients H_{i+1}/H_i of a principal series (thus $\Omega = \text{Inn}(G)$ here)

$$1 = H_0 < H_1 < \dots < H_n = G$$

are characteristically simple groups.

(4) Show that a minimal normal subgroup of a finite group G is the product of isomorphic copies of a simple group.

Exercise 1.5. Let G be a group. For each $g \in G$, let

$$\iota(g): G \to G$$
$$x \mapsto g^{-1}xg$$

be the corresponding inner automorphism.

- (1) Show that $\iota(g) \in \operatorname{Aut}(G)$ for each $g \in G$.
- (2) Show that $\iota(1) = 1$ is the identity on G, and that $\iota(g)\iota(h^{-1}) = \iota(gh^{-1})$ for $g, h \in G$, so that

$$Inn(G) = \{ \iota(g) : g \in G \}$$

is a subgroup of Aut(G).

- (3) Show that for $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ we have $\iota(g)^{\alpha} = \alpha^{-1}\iota(g)\alpha = \iota(g^{\alpha}),$
- so that Inn(G) is a *normal* subgroup of Aut(G). (4) Show that if $N \subseteq G$ and $\alpha \in \text{Aut}(G)$, then $N^{\alpha} \subseteq G$.