TRENTO, A.A. 2021/22 GEOMETRY AND LINEAR ALGEBRA EXERCISE SHEET # 12

Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 12.1. State and prove the Gram-Schmidt theorem.

Exercise 12.2. Let $v_1 = [1, 1]$ and $v_2 = [1, 2]$.

- (1) Show that v_1, v_2 is a base for \mathbf{R}^2 .
- (2) Apply Gram-Schmidt to v_1, v_2 to find a base of \mathbf{R}^2 which is orthonormal with respect to the scalar product.

Exercise 12.3. Let

$$v_1 = [1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}],$$

 $v_2 = [1/\sqrt{2}, 0, -1/\sqrt{2}],$ and
 $v_3 = [2, 1, 0].$

What happens when we apply Gram-Schmidt to v_1, v_2, v_3 , and why?

Exercise 12.4.

- (1) Show that if V is a vector space equipped with an inner product, and v_1, \ldots, v_k are orthonormal, then v_1, \ldots, v_k are linearly independent.
- (2) Let $V = \mathbf{R}^3$ be equipped with the usual scalar product as an inner product. (a) Show that the vectors

$$b_1 = [1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}],$$

 $b_2 = [1/\sqrt{2}, 0, -1/\sqrt{2}], \text{ and}$
 $b_3 = [1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6}]$

form an orthonormal base. (HINT: First show that they are orthonormal, and then...)

(b) Write the vector [1, 2, 3] as a linear combination of b_1, b_2, b_3 , using scalar products.