Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 12.1. State and prove the Gram-Schmidt theorem.
Exercise 12.2. Let $v_{1}=[1,1]$ and $v_{2}=[1,2]$.
(1) Show that v_{1}, v_{2} is a base for \mathbf{R}^{2}.
(2) Apply Gram-Schmidt to v_{1}, v_{2} to find a base of \mathbf{R}^{2} which is orthonormal with respect to the scalar product.

Exercise 12.3. Let

$$
\begin{aligned}
v_{1} & =[1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}], \\
v_{2} & =[1 / \sqrt{2}, 0,-1 / \sqrt{2}], \text { and } \\
v_{3} & =[2,1,0] .
\end{aligned}
$$

What happens when we apply Gram-Schmidt to v_{1}, v_{2}, v_{3}, and why?

Exercise 12.4.

(1) Show that if V is a vector space equipped with an inner product, and v_{1}, \ldots, v_{k} are orthonormal, then v_{1}, \ldots, v_{k} are linearly independent.
(2) Let $V=\mathbf{R}^{3}$ be equipped with the usual scalar product as an inner product.
(a) Show that the vectors

$$
\begin{aligned}
& b_{1}=[1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}], \\
& b_{2}=[1 / \sqrt{2}, 0,-1 / \sqrt{2}], \text { and } \\
& b_{3}=[1 / \sqrt{6},-2 / \sqrt{6}, 1 / \sqrt{6}]
\end{aligned}
$$

form an orthonormal base. (Hint: First show that they are orthonormal, and then...)
(b) Write the vector $[1,2,3]$ as a linear combination of b_{1}, b_{2}, b_{3}, using scalar products.

