TRENTO, A.A. 2021/22 GEOMETRY AND LINEAR ALGEBRA EXERCISE SHEET \# 10

Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Note: the exercises in red and in blue have been treated during the lectures.
Note: for technical reasons, sometimes in the following exercises we write something like " $e_{1}+(-1) e_{2}$ ", which just means $e_{1}-e_{2}$.

Exercise 10.1. Show that if v is an eigenvector for the linear function f with respect to the eigenvalue λ, and $a \neq 0$ is a number, then $a v$ is also an eigenvector for f with respect to the eigenvalue λ.

Exercise 10.2. Define diagonalisable matrices.
Exercise 10.3. Define the algebraic and geometric multiplicity of an eigenvalue.
Exercise 10.4.
(1) Show that eigenvectors relative to distinct eigenvalues are linearly independent.
(2) Show that if a linear function has distinct eigenvalues, then it is diagonalisable.

Exercise 10.5. Let V be a vector space of dimension 2, and let e_{1}, e_{2} be a base.
Consider the linear function $f: V \rightarrow V$ given by

$$
\left\{\begin{array}{l}
f\left(e_{1}\right)=5 e_{1}+2 e_{2} \\
f\left(e_{2}\right)=(-12) e_{1}+(-5) e_{2}
\end{array}\right.
$$

Write the matrix A of f with respect to the basee e_{1}, e_{2}.
Compute the characteristic polynomial (in the variable λ)

$$
\operatorname{det}(A-\lambda I)
$$

where I is the 2×2 identity matrix. Find the eigenvalues λ_{1}, λ_{2} if A as the solutions to the equation

$$
\operatorname{det}(A-\lambda I)=0
$$

For each eigenvalue λ_{i}, find an eigenvector g_{i}. Show that g_{1}, g_{2} is a base of V, and write the matrix B of f with respect to the base g_{1}, g_{2}.

Exercise 10.6. Let V be a vector space of dimension 2, and let e_{1}, e_{2} be a base.
Consider the linear function $f: V \rightarrow V$ given by

$$
\left\{\begin{array}{l}
f\left(e_{1}\right)=(-4) e_{1}+10 e_{2} \\
f\left(e_{2}\right)=(-3) e_{1}+7 e_{2}
\end{array}\right.
$$

Write the matrix A of f with respect to the base e_{1}, e_{2}.
Compute the characteristic polynomial (in the variable λ)

$$
\operatorname{det}(A-\lambda I)
$$

where I is the 2×2 identity matrix. Find the eigenvalues λ_{1}, λ_{2} if A as the solutions to the equation

$$
\operatorname{det}(A-\lambda I)=0
$$

For each eigenvalue λ_{i}, find an eigenvector g_{i}. Show that g_{1}, g_{2} is a base of V, and write the matrix B of f with respect to the base g_{1}, g_{2}.

Exercise 10.7. Let V be a vector space of dimension n, and let $f: V \rightarrow V$ be a linear function. Suppose V has a base e_{1}, \ldots, e_{n} consisting of eigenvectors of f, that is, there are numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
f\left(e_{i}\right)=\lambda_{i} e_{i}
$$

for $i=1, \ldots, n$.
Show that the matrix of f with respect to the base e_{1}, \ldots, e_{n} is

$$
\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
0 & 0 & \lambda_{3} & \ldots & 0 \\
& & & \ddots & \\
0 & 0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

Exercise 10.8. Compute the characteristic polynomial of $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, and show that A does not have real eigenvalues.

Exercise 10.9. Compute the characteristic polynomial of

$$
A=\left[\begin{array}{cc}
-9 & -4 \\
25 & 11
\end{array}\right]
$$

(1) Show that the roots of the characteristic polynomial are 1,1 .
(2) Show that the eigenvectors with respect to the eigenvalue 1 form a subspace of dimension 1 (minus the zero vector).
(3) If g_{1} is one of these eigenvectors, choose arbitrarily a vector g_{2} such that g_{1}, g_{2} is a base, and write the matrix of A with respect to this base.

Exercise 10.10. For each of the following matrices A,
(1) compute the characteristic polynomial,
(2) compute the eigenvalues,
(3) state whether A is diagonalisable or not.
(a) If it is not diagonalisable, please stop.
(b) If it is diagonalisable, find a base of eigenvectors, and a matrix S such that $S^{-1} A S$ is diagonal.

$$
\begin{gathered}
{\left[\begin{array}{cc}
5 & 3 \\
-4 & -2
\end{array}\right],\left[\begin{array}{cc}
-3 & -2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ccc}
5 / 2 & -1 / 2 & -1 \\
1 / 2 & 3 / 2 & -1 \\
-1 / 2 & -1 / 2 & 2
\end{array}\right],\left[\begin{array}{ccc}
3 / 2 & 0 & -1 / 2 \\
1 / 2 & 1 & -1 / 2 \\
-1 / 2 & 0 & 3 / 2
\end{array}\right]} \\
{\left[\begin{array}{ccc}
2 & -1 / 2 & -1 / 2 \\
1 & 1 / 2 & -1 / 2 \\
0 & -1 / 2 & 3 / 2
\end{array}\right],\left[\begin{array}{ccc}
3 & 4 & 2 \\
-1 & -1 & -1 \\
1 & 2 & 2
\end{array}\right],\left[\begin{array}{ccc}
7 & 4 & -6 \\
-4 & -1 & 5 \\
3 & 2 & -2
\end{array}\right] .}
\end{gathered}
$$

If at some point while working out the exercise you are able to say that the matrix is diagonalisable (what do I know, perhaps the eigenvalues are distinct), then spell it out!

Exercise 10.11. For each of the following matrices A,
(1) compute the characteristic polynomial,
(2) compute the eigenvalues,
(3) state whether A is diagonalisable or not.
(a) If it is not diagonalisable, please stop.
(b) If it is diagonalisable, find a base of eigenvectors, and a matrix S such that $S^{-1} A S$ is diagonal.

$$
\left[\begin{array}{ccc}
3 & 4 & 2 \\
-1 & -1 & -1 \\
1 & 2 & 2
\end{array}\right],\left[\begin{array}{ccc}
7 & 4 & -6 \\
-4 & -1 & 5 \\
3 & 2 & -2
\end{array}\right],\left[\begin{array}{ccc}
8 & 8 & -2 \\
-4 & -3 & 2 \\
3 & 4 & 1
\end{array}\right]
$$

If at some point while working out the exercise you are able to say that the matrix is diagonalisable (what do I know, perhaps the eigenvalues are distinct), then spell it out!

