TRENTO, A.A. 2021/22 GEOMETRY AND LINEAR ALGEBRA EXERCISE SHEET # 9

Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 9.1. Let $V = \mathbf{R}^2$ and $W = \mathbf{R}^2$.

- (1) Prove that $\mathcal{B} = \{(1, 1), (1, 0)\}$ is a basis of \mathbb{R}^2 .
- (2) Consider the function $f: V \to W$ defined as

$$f(\alpha, \beta) = (\alpha - \beta, 3\beta)$$
 for all $(\alpha, \beta) \in V$.

Prove that f is linear.

- (3) Write the matrix M of the function f with respect to the standard basis \mathcal{E} on V and W.
- (4) Write the matrix N of the function f with respect to the standard basis \mathcal{E} on V and \mathcal{B} on W.

Exercise 9.2. Let $V = \mathbf{R}^3$ and $W = \mathbf{R}^2$.

- (1) Prove that $\mathcal{B} = \{(1, 1), (1, 2)\}$ is a basis of W.
- (2) Consider the function $f: V \to W$ defined as

$$f(\alpha, \beta, \gamma) = (\alpha - \gamma, \beta)$$
 for all $(\alpha, \beta, \gamma) \in V$.

Prove that f is linear.

(3) Write the matrix M of the function with f with respect to the standard basis \mathcal{E} on V and \mathcal{B} on W.

Exercise 9.3. Let $V = \mathbf{R}^4$ and $W = \mathbf{R}^3$.

- (1) Prove that $\mathcal{B} = \{(1, 1, 2), (1, 0, 1), (0, 0, 1)\}$ is a basis of \mathbb{R}^3 .
- (2) Consider the linear function $f: V \to W$ defined as

$$f(a, b, c, d) = (a + 2b, 3c, a - d)$$
 for all $(a, b, c, d) \in V$.

(Optional: check that f is linear).

- (3) Write the matrix M of f with respect to the standard bases on V and W.
- (4) Write the matrix N of f with respect to the standard basis \mathcal{E} on V and \mathcal{B} on W.

Exercise 9.4. Consider the following bases of \mathbf{R}^2 :

$$\mathcal{B} = \{(1,1), (1,2)\}, \quad \mathcal{B}' = \{(1,0), (1,1)\}.$$

- (1) Find the matrix M of change of basis from \mathcal{B} to the standard basis \mathcal{E} .
- (2) Find the matrix N of change of basis from \mathcal{E} to \mathcal{B} .
- (3) Find the matrix P of change of basis from \mathcal{B} to \mathcal{B}' .

(4) Find the coordinates of the vector v = (3, 5) with respect to the bases $\mathcal{B}, \mathcal{B}', \mathcal{E}$.

Exercise 9.5. Consider the following sets in \mathbb{R}^3 :

 $\mathcal{B} = \{(1,1,0), (1,0,2), (1,0,0)\}, \quad \mathcal{B}' = \{(1,0,1), (0,1,0), (2,0,0)\}.$

- (1) Prove that \mathcal{B} and \mathcal{B}' are bases of \mathbb{R}^3 .
- (2) Find the matrix M of change of basis from \mathcal{B} to the standard basis \mathcal{E} .
- (3) Find the matrix N of change of basis from \mathcal{E} to \mathcal{B} .
- (4) Find the matrix P of change of basis from \mathcal{B} to \mathcal{B}' .
- (5) Find the coordinates of the vector v = (1, 4, 6) with respect to the bases $\mathcal{E}, \mathcal{B}, \mathcal{B}'$.

Exercise 9.6. Consider the linear function $f : \mathbf{R}^2 \to \mathbf{R}^2$ defined as f(a, b) = (-b, -a) for all $(a, b) \in \mathbf{R}^2$.

- (1) Write the matrix A of f with respect to the standard basis.
- (2) Find the eigenvalues and a basis for each eigenspace of A.

Exercise 9.7. Consider the linear function $f : \mathbf{R}^2 \to \mathbf{R}^2$ defined as f(a, b) = (a + b, b) for all $(a, b) \in \mathbf{R}^2$.

- (1) Write the matrix A of f with respect to the standard basis.
- (2) Find the eigenvalues and a basis for each eigenspace of A.