Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 9.1. Let $V=\mathbf{R}^{2}$ and $W=\mathbf{R}^{2}$.
(1) Prove that $\mathcal{B}=\{(1,1),(1,0)\}$ is a basis of \mathbf{R}^{2}.
(2) Consider the function $f: V \rightarrow W$ defined as

$$
f(\alpha, \beta)=(\alpha-\beta, 3 \beta) \quad \text { for all }(\alpha, \beta) \in V
$$

Prove that f is linear.
(3) Write the matrix M of the function f with respect to the standard basis \mathcal{E} on V and W.
(4) Write the matrix N of the function f with respect to the standard basis \mathcal{E} on V and \mathcal{B} on W.

Exercise 9.2. Let $V=\mathbf{R}^{3}$ and $W=\mathbf{R}^{2}$.
(1) Prove that $\mathcal{B}=\{(1,1),(1,2)\}$ is a basis of W.
(2) Consider the function $f: V \rightarrow W$ defined as

$$
f(\alpha, \beta, \gamma)=(\alpha-\gamma, \beta) \quad \text { for all }(\alpha, \beta, \gamma) \in V
$$

Prove that f is linear.
(3) Write the matrix M of the function with f with respect to the standard basis \mathcal{E} on V and \mathcal{B} on W.

Exercise 9.3. Let $V=\mathbf{R}^{4}$ and $W=\mathbf{R}^{3}$.
(1) Prove that $\mathcal{B}=\{(1,1,2),(1,0,1),(0,0,1)\}$ is a basis of \mathbf{R}^{3}.
(2) Consider the linear function $f: V \rightarrow W$ defined as

$$
f(a, b, c, d)=(a+2 b, 3 c, a-d) \quad \text { for all }(a, b, c, d) \in V .
$$

(Optional: check that f is linear).
(3) Write the matrix M of f with respect to the standard bases on V and W.
(4) Write the matrix N of f with respect to the standard basis \mathcal{E} on V and \mathcal{B} on W.
Exercise 9.4. Consider the following bases of \mathbf{R}^{2} :

$$
\mathcal{B}=\{(1,1),(1,2)\}, \quad \mathcal{B}^{\prime}=\{(1,0),(1,1)\} .
$$

(1) Find the matrix M of change of basis from \mathcal{B} to the standard basis \mathcal{E}.
(2) Find the matrix N of change of basis from \mathcal{E} to \mathcal{B}.
(3) Find the matrix P of change of basis from \mathcal{B} to \mathcal{B}^{\prime}.
(4) Find the coordinates of the vector $v=(3,5)$ with respect to the bases $\mathcal{B}, \mathcal{B}^{\prime}, \mathcal{E}$.

Exercise 9.5. Consider the following sets in \mathbf{R}^{3} :
$\mathcal{B}=\{(1,1,0),(1,0,2),(1,0,0)\}, \quad \mathcal{B}^{\prime}=\{(1,0,1),(0,1,0),(2,0,0)\}$.
(1) Prove that \mathcal{B} and \mathcal{B}^{\prime} are bases of \mathbf{R}^{3}.
(2) Find the matrix M of change of basis from \mathcal{B} to the standard basis \mathcal{E}.
(3) Find the matrix N of change of basis from \mathcal{E} to \mathcal{B}.
(4) Find the matrix P of change of basis from \mathcal{B} to \mathcal{B}^{\prime}.
(5) Find the coordinates of the vector $v=(1,4,6)$ with respect to the bases $\mathcal{E}, \mathcal{B}, \mathcal{B}^{\prime}$.

Exercise 9.6. Consider the linear function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined as $f(a, b)=$ $(-b,-a)$ for all $(a, b) \in \mathbf{R}^{2}$.
(1) Write the matrix A of f with respect to the standard basis.
(2) Find the eigenvalues and a basis for each eigenspace of A.

Exercise 9.7. Consider the linear function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined as $f(a, b)=$ $(a+b, b)$ for all $(a, b) \in \mathbf{R}^{2}$.
(1) Write the matrix A of f with respect to the standard basis.
(2) Find the eigenvalues and a basis for each eigenspace of A.

