TRENTO, A.A. 2021/22 GEOMETRY AND LINEAR ALGEBRA EXERCISE SHEET # 8

Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 8.1. Consider the linear function $f : \mathbf{R}^4 \to \mathbf{R}^3$ defined as

$$f(x, y, w, z) = (x + y, x + y + z, 2x + 2y + z, y + 2w + 3z)$$

for all $(x, y, w, z) \in \mathbf{R}^4$.

Say if f is surjective/injective.

Exercise 8.2. Consider the linear function $f : \mathbf{R}^3 \to \mathbf{R}^4$ defined as

$$f(x, y, z) = (x - y, x + y + z, y + z, 2x + z)$$

for all $(x, y, z) \in \mathbf{R}^3$.

Say if f is surjective/injective.

Exercise 8.3. Let V be a vector space with $\dim(V) = n$. Let v_1, \ldots, v_n be a basis of V. Prove that the function $f : \mathbb{R}^n \to V$, defined as

$$f(c_1,\ldots,c_n)=c_1v_1+\cdots+c_nv_n$$

for all $(c_1, \ldots, c_n) \in \mathbf{R}^n$, is linear.

Exercise 8.4. Let V, W be vector spaces, and $f: V \to W$ be a linear function.

- (1) Show that $\ker(f) = \{ v \in V : f(v) = 0 \}$ is a subspace of V, and $F(V) = \{ f(v) : v \in V \}$ is a subspace of W.
- (2) Let k_1, \ldots, k_n be a base of ker(f), and b_1, \ldots, b_r be elements of V such that $b_1, \ldots, b_r, k_1, \ldots, k_n$ is a base of V.
 - (a) Show that $f(b_1), \ldots, f(b_r)$ is a base of f(V).
 - (b) Let w_1, w_2, \ldots be vectors such that $f(b_1), \ldots, f(b_r), w_1, w_2, \ldots$ is a base of W. Show that with respect to these bases of V and W the matrix of f is of the block form

$$\begin{bmatrix} I & | & 0_{r,n} \\ 0 & | & 0 \end{bmatrix}$$

Here I is an $r \times r$ identity matrix, $0_{r,n}$ is a zero $r \times n$ matrix, and the other zeroes are appropriate zero matrices.

Exercise 8.5. Define eigenvalues and eigenvectors.