Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 7.1. Define a linear function.

Exercise 7.2. Let V be a vector space of dimension 2, and let e_{1}, e_{2} be a base of V.

Consider the linear function $f: V \rightarrow V$ given by

$$
\begin{aligned}
& f\left(e_{1}\right)=e_{1}+2 e_{2}, \\
& f\left(e_{2}\right)=e_{1}-e_{2}
\end{aligned}
$$

Write the matrix A of f with respect to the base e_{1}, e_{2}.
Consider the vectors

$$
\begin{aligned}
& g_{1}=e_{1}+2 e_{2}, \\
& g_{2}=3 e_{1}-e_{2}
\end{aligned}
$$

(1) Show that g_{1}, g_{2} are a base of V,
(2) write e_{1}, e_{2} as linear combinations of g_{1}, g_{2} (if you spell this out, you will see it is a matter of solving a system of linear equations), and
(3) write the matrix B of f with respect to the base g_{1}, g_{2}.

Exercise 7.3. Let V be a vector space of dimension 3, and let e_{1}, e_{2}, e_{3} be a base of V.

Consider the linear function $f: V \rightarrow V$ given by

$$
\begin{aligned}
f\left(e_{1}\right) & =e_{1}+e_{2} \\
f\left(e_{2}\right) & = \\
f\left(e_{3}\right) & =e_{1}
\end{aligned}
$$

Write the matrix A of f with respect to the base e_{1}, e_{2}, e_{3}.
Consider the vectors

$$
\begin{aligned}
g_{1} & =e_{1}, \\
g_{2} & =e_{1}-e_{2}-e_{3}, \\
g_{3} & =
\end{aligned}
$$

(1) Show that g_{1}, g_{2}, g_{3} are a base of V,
(2) write e_{1}, e_{2}, e_{3} as linear combinations of g_{1}, g_{2}, g_{3}, and
(3) write the matrix B of f with respect to the base g_{1}, g_{2}, g_{3}.

