TRENTO, A.A. 2021/22 GEOMETRY AND LINEAR ALGEBRA EXERCISE SHEET \# 6

Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 6.1. Say whether each of the following matrices A are invertible or not (in other words, compute the determinant), and in case compute an inverse, that is, a matrix B such that $A B=I=B A$, where I is an identity matrix of a suitable size.

$$
[7],\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right],\left[\begin{array}{ccc}
3 & 2 & 1 \\
2 & 1 & 0 \\
7 & -1 & 1
\end{array}\right],\left[\begin{array}{ccc}
3 & 2 & 1 \\
2 & 1 & 0 \\
-1 & -1 & -1
\end{array}\right],\left[\begin{array}{cccc}
3 & 2 & 1 & -1 \\
2 & 1 & 0 & 0 \\
-1 & -1 & -1 & 2 \\
1 & -1 & 0 & -2
\end{array}\right]
$$

Exercise 6.2. Consider the following subset of \mathbf{R}^{4} :

$$
S=\{(1,1,0,0),(1,0,1,0)\} .
$$

Check that the vectors of S are linearly independent and extend S to a basis of \mathbf{R}^{4}.

Exercise 6.3. Consider the following subset of \mathbf{R}^{4} :

$$
S=\{(1,1,0,0),(1,0,1,1),(2,1,1,1),(0,1,1,0),(1,1,2,1)\} .
$$

Let $V=\operatorname{span}(S)$. Find a basis of V.

