TRENTO, A.A. 2021/22
 GEOMETRY AND LINEAR ALGEBRA EXERCISE SHEET \# 5

Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 5.1.

(1) Define
(a) systems of generators,
(b) linear dependence,
(c) linear independence,
(d) bases.
(2) Show that the following are equivalent.
(a) v_{1}, \ldots, v_{m} are linearly dependent, and
(b) (at least) one of the v_{i} can be written as a linear combination of the others.
Show that as a consequence, if v_{1}, \ldots, v_{m} are a system of generators of a space V, and they are linearly dependent, say v_{m} is a linear combination of v_{1}, \ldots, v_{m-1}, then v_{1}, \ldots, v_{m-1} is a system of generators for V, that is, you can safely drop v_{m}.
(3) Show that the following are equivalent (to being a base).
(a) v_{1}, \ldots, v_{m} are a system of generators of a space V, which are linearly independent, and
(b) Every element of V can be written uniquely as a linear combination of v_{1}, \ldots, v_{m}.

Exercise 5.2. Show that if one of v_{1}, \ldots, v_{m} is zero, then v_{1}, \ldots, v_{m} are linearly dependent.

Exercise 5.3. For each of the following sysyem of vectors, state whether they are a basis of \mathbf{R}^{3}. When they are not, state explicitly which condition fails.
(1)

$$
\left\{\begin{array}{l}
v_{1}=(1,0,0) \\
v_{2}=(0,1,0) \\
v_{3}=(0,0,1)
\end{array}\right.
$$

(2)

$$
\left\{\begin{array}{l}
v_{1}=(1,0,0) \\
v_{2}=(0,1,0)
\end{array}\right.
$$

(3)

$$
\left\{\begin{array}{l}
v_{1}=(1,-1,0) \\
v_{2}=(0,1,-1) \\
v_{3}=(-1,0,1)
\end{array}\right.
$$

(4)

$$
\left\{\begin{array}{l}
v_{1}=(1,-1,0) \\
v_{2}=(0,1,-1) \\
v_{3}=(1,0,1)
\end{array}\right.
$$

