Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 2.1. Find a parametric equation of the line in the plane \mathbf{R}^{2} described by the implicit (Cartesian) equation $x+4 y=7$ in the unknowns x, y.
Exercise 2.2. Find a parametric equation of the line of the line in the plane \mathbf{R}^{2} described by the implicit (Cartesian) equation $4 y=7$ in the unknowns x, y.
Exercise 2.3. Find a Cartesian equation of the line in the plane \mathbf{R}^{2} described by the parametric equation $(x, y)=(3,4)+t(1,5)$.
Exercise 2.4. Find a Cartesian equation of the line in the plane \mathbf{R}^{2} described by the parametric equation $(x, y)=(3,4)+t(5,0)$.
Exercise 2.5. Discuss the following systems of equations in x, y from the point of view of intersections of lines. If one of the systems admits a single solution, find it.

$$
\left\{\begin{array} { l }
{ x + y = 1 } \\
{ x + 2 y = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ x + y = 1 } \\
{ 2 x + 2 y = 0 }
\end{array} \quad \left\{\begin{array}{l}
x+y=1 \\
2 x+2 y=2
\end{array}\right.\right.\right.
$$

Exercise 2.6.
(1) Define the scalar product of two vectors in the plane.
(2) Let $v, w \in \mathbf{R}^{2}$ be two vectors of length one. Show that the scalar product v, w equals the cosine of the angle between the two vectors.
(3) (Optional) Let $v, w \in \mathbf{R}^{2}$ be two vectors. Show that the scalar product v, w equals $\|v\| \cdot\|w\| \cdot \cos (\alpha)$, where α the cosine of the angle between the two vectors.

Exercise 2.7. Let $p=(1,2), q=(2,3)$. Find parametric and Cartesian equations of the line through p and q.
Exercise 2.8. Consider the line \mathfrak{l} given by the parametric equations

$$
\left\{\begin{array}{l}
x=1+2 t \\
y=3+5 t
\end{array}\right.
$$

. Find the orthogonal projection of the point $p=(0,0)$ onto \mathfrak{l}, that is, the intersection of \mathfrak{l} with the line \mathfrak{r} passing through the point p, and orthogonal to \mathfrak{l}.

