TRENTO, A.A. 2021/22 GEOMETRY AND LINEAR ALGEBRA EXERCISE SHEET # 2

Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 2.1. Find a parametric equation of the line in the plane \mathbb{R}^2 described by the implicit (Cartesian) equation x + 4y = 7 in the unknowns x, y.

Exercise 2.2. Find a parametric equation of the line of the line in the plane \mathbb{R}^2 described by the implicit (Cartesian) equation 4y = 7 in the unknowns x, y.

Exercise 2.3. Find a Cartesian equation of the line in the plane \mathbb{R}^2 described by the parametric equation (x, y) = (3, 4) + t(1, 5).

Exercise 2.4. Find a Cartesian equation of the line in the plane \mathbb{R}^2 described by the parametric equation (x, y) = (3, 4) + t(5, 0).

Exercise 2.5. Discuss the following systems of equations in x, y from the point of view of intersections of lines. If one of the systems admits a single solution, find it.

$$\begin{cases} x + y = 1 \\ x + 2y = 0 \end{cases} \qquad \begin{cases} x + y = 1 \\ 2x + 2y = 0 \end{cases} \qquad \begin{cases} x + y = 1 \\ 2x + 2y = 2 \end{cases}$$

Exercise 2.6.

- (1) Define the scalar product of two vectors in the plane.
- (2) Let $v, w \in \mathbb{R}^2$ be two vectors of length one. Show that the scalar product v, w equals the cosine of the angle between the two vectors.
- (3) (Optional) Let $v, w \in \mathbf{R}^2$ be two vectors. Show that the scalar product v, w equals $||v|| \cdot ||w|| \cdot \cos(\alpha)$, where α the cosine of the angle between the two vectors.

Exercise 2.7. Let p = (1, 2), q = (2, 3). Find parametric and Cartesian equations of the line through p and q.

Exercise 2.8. Consider the line l given by the parametric equations

$$\begin{cases} x = 1 + 2t \\ y = 3 + 5t \end{cases}$$

. Find the orthogonal projection of the point p = (0,0) onto \mathfrak{l} , that is, the intersection of \mathfrak{l} with the line \mathfrak{r} passing through the point p, and orthogonal to \mathfrak{l} .