Important! In solving the exercises

- explain what you are doing,
- explain why you are doing what you are doing, and
- spell out all intermediate steps.

Exercise 1.1. Discuss the solutions x of the equation $a x=b$, where a, b are real numbers.
(Hint: You should say under which conditions on a, b the equation has solutions, and then how many; and say under which conditions on a, b the equation has no solutions.)
Exercise 1.2. Discuss the solutions x, y of the equation

$$
\begin{equation*}
a x+b y=c . \tag{1}
\end{equation*}
$$

In detail,
(1) Discuss the case $a=b=0$.
(2) Show how to find the solutions when $a \neq 0$.
(3) Show how to find the solutions when $b \neq 0$.
(4) Show that if a, b are both non-zero, and if x_{0}, y_{0} is a solution of (1), then the solutions of (1) are exactly the pairs x, y of the form

$$
\left\{\begin{array}{l}
x=-b t+x_{0} \\
y=a t+y_{0}
\end{array}\right.
$$

where t is an arbitrary real number. (Hint: We are going to discuss this point in the lectures, but try and do it yourself.)

Exercise 1.3.

(1) Give the formula for the length $\|v\|$ of a vector v in \mathbf{R}^{2}.
(2) Define the multiplication $t v$ of a vector v by a scalar t (i.e. a real number).
(3) Show that if v is a vector and t is a scalar, then $\|t v\|=|t| \cdot\|v\|$, where $|t|$ denotes the absolute value of v.
(4) Show that if $v \neq(0,0)=O$ is a vector, and $t 0$ is a number, then the vector $t v$ lies on the line from O to v.

