TRENTO, A.A. 2022/23 CORSO DI ALGEBRA B FOGLIO DI ESERCIZI # 8

Esercizio 8.1. Sia $E \supseteq \mathbf{F}_p$ un campo di caratteristica il primo p.

Sia $f \in F_p[x]$ un polinomio di grado positivo.

Si mostri che se $\alpha \in E$ è un radice di f, allora lo sono anche $\alpha^p, \alpha^{p^2}, \ldots, \alpha^{p^i}, \ldots$

Esercizio 8.2. Sia E un campo finito di ordine p^n , con p primo e n > 0 un intero. Si assuma come noto che il gruppo moltiplicativo E^* sia ciclico.

Si mostri che esiste $\alpha \in E$ tale che

- (1) $E = \mathbf{F}_{p}[\alpha]$, e
- (2) il polinomio minimo di α su F_p è un polinomio irriducibile di grado n in $\mathbf{F}_p[x]$.

Esercizio 8.3. Si mostri che c'è un unico polinomio irriducibile f di grado 2 in $\mathbf{F}_2[x]$.

Si costruisca un campo $E = \mathbf{F}_2[\alpha]$ con 4 elementi, ove α è radice di f.

Si trovino in E tutte le radici di f, e i polinomi minimi su \mathbf{F}_2 di tutti gli elementi.

Esercizio 8.4. Si trovino i due polinomi irriducibili f_1, f_2 di grado 3 in $\mathbf{F}_2[x]$.

Si costruisca un campo $E = \mathbf{F}_2[\alpha]$ con 8 elementi, ove α è radice di f_1 . Si calcolino le potenze di α , costruendo la tabella del logaritmo discreto. Si trovino in E tutte le radici di f_1 e f_2 , e i polinomi minimi su \mathbf{F}_2 di tutti gli elementi.

Si costruisca un campo $E = \mathbf{F}_2[\beta]$ con 8 elementi, ove β è radice di f_2 . Si calcolino le potenze di β , costruendo la tabella del logaritmo discreto. Si trovino in E tutte le radici di f_1 e f_2 , e i polinomi minimi su \mathbf{F}_2 di tutti gli elementi.

Esercizio 8.5. Sia $\mathbf{F}_3 = \{0, 1, -1\}$ il campo con 3 elementi.

Si trovino i tre polinomi monici e irriducibili f_1, f_2, f_3 di grado 2 in $\mathbf{F}_3[x]$, e sia $f_3 = x^2 + 1$.

Si costruisca un campo $E = \mathbf{F}_3[\alpha]$ con 9 elementi, ove α è radice di f_1 . Si calcolino le potenze di α , costruendo la tabella del logaritmo discreto. Si trovino in E tutte le radici di f_1 , f_2 , f_3 , e i polinomi minimi su \mathbf{F}_3 di tutti gli elementi.

Si costruisca un campo $E = \mathbf{F}_3[\beta]$ con 9 elementi, ove α è radice di f_2 . Si calcolino le potenze di β , costruendo la tabella del logaritmo discreto. Si trovino in E tutte le radici di f_1 , f_2 , f_3 , e i polinomi minimi su \mathbf{F}_3 di tutti gli elementi.

Esercizio 8.6. Si trovino i tre polinomi irriducibili f_1, f_2, f_3 di grado 4 in $\mathbf{F}_2[x]$, e sia $f_3 = x^4 + x^3 + x^2 + x + 1$.

Si costruisca un campo $E = \mathbf{F}_2[\alpha]$ con 16 elementi, ove α è radice di f_1 . Si calcolino le potenze di α , costruendo la tabella del logaritmo discreto. Si trovino in E tutte le radici di f_1 , f_2 , f_3 , e del polinomio f dell'esercizio 8.3.

Si costruisca un campo $E = \mathbf{F}_2[\beta]$ con 16 elementi, ove α è radice di f_2 . Si calcolino le potenze di β , costruendo la tabella del logaritmo discreto. Si trovino in E tutte le radici di f_1 , f_2 , f_3 , e del polinomio f dell'esercizio 8.3, e i polinomi minimi su \mathbf{F}_2 di tutti gli elementi.

Esercizio 8.7. Siano p un primo, e m, n interi positivi.

Si mostri che sono equivalenti

- (1) un campo con p^n elementi contiene un campo con p^m elementi, e
- (2) m divide n.

Esercizio 8.8. Definite la distanza di Hamming d su \mathbf{F}_2^n , e mostrate che soddisfa, per $a, b, c \in \mathbf{F}_2^n$,

- (1) d(a, b) = 0 se e solo se a = b.
- (2) d(a,b) = d(b,a).
- (3) $d(a,b) \le d(a,c) + d(c,b)$.
- (4) d(a,b) = d(a-b,0).

Esercizio8.9. Sia ${\mathcal C}$ un codice lineare binario, e si definisca la sua distanza minima come

$$d(\mathcal{C}) = \min \left\{ d(a, b) : a, b \in \mathcal{C}, a \neq b \right\}.$$

Si mostri che

$$d(C) = \min \{ d(a, 0) : a \in C, a \neq 0 \}.$$

Esercizio 8.10 (Facoltativo). Sia $\mathcal{A} = \{0, 1, \dots, 10\}$. Il codice ISBN-10 è il sottoinsieme \mathcal{C} di \mathcal{A}^{10} , dato dai vettori $a = (a_1, a_2, \dots, a_{10})$ tali che $a_1, \dots, a_9 \in \{0, 1, \dots, 9\}$, e l'ultima cifra a_{10} è calcolata mediante

$$a_{10} = \sum_{i=1}^{9} i \cdot a_i \pmod{11},$$

cioè a_{10} è il resto della divisione per 11 di $\sum_{i=1}^{9} i \cdot a_{i}$. (Se $a_{10} = 10$, sul retro dei libri si scrive X.) Notate anche che questa formula si può riscrivere nella forma

$$\sum_{i=1}^{10} i \cdot a_i \equiv 0 \pmod{11},$$

dato che $-1 \equiv 10 \pmod{11}$.

- Mostrare che \mathcal{C} rivela un errore, nel senso che se $a \in \mathcal{C}$, e cambio una cifra di a, ottenendo un vettore b, allora $b \notin \mathcal{C}$
- Mostrare che \mathcal{C} rivela uno scambio, nel senso che se $a \in \mathcal{C}$, e scambio due cifre diverse di a, ottenendo un vettore b, allora $b \notin \mathcal{C}$